kumquat-buildroot/package/dieharder/0005-Remove-defunct-rgb_operm.patch
Fabrice Fontaine d0ffdb2bdd package/dieharder: drop rgb_operm
Fix the following build failure:

/home/autobuild/autobuild/instance-7/output-1/host/lib/gcc/m68k-buildroot-linux-uclibc/11.2.0/../../../../m68k-buildroot-linux-uclibc/bin/ld: dieharder-add_ui_rngs.o:(.data+0xd8): undefined reference to `rgb_operm'

Fixes:
 - http://autobuild.buildroot.org/results/7be339674291b39f8eddb8ad065f0988128ecfe9

Signed-off-by: Fabrice Fontaine <fontaine.fabrice@gmail.com>
Signed-off-by: Arnout Vandecappelle (Essensium/Mind) <arnout@mind.be>
2022-04-04 21:43:52 +02:00

733 lines
22 KiB
Diff

From 40d377b86c856f5a4510a6f5cd56be004873ad77 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Marcus=20M=C3=BCller?= <mueller@kit.edu>
Date: Mon, 12 Oct 2020 21:30:12 +0200
Subject: [PATCH] Remove defunct rgb_operm
[Retrieved from:
https://github.com/eddelbuettel/dieharder/pull/2/commits/40d377b86c856f5a4510a6f5cd56be004873ad77]
Signed-off-by: Fabrice Fontaine <fontaine.fabrice@gmail.com>
---
include/Makefile.am | 1 -
include/dieharder/rgb_operm.h | 38 --
include/dieharder/tests.h | 2 -
libdieharder/rgb_operm.c | 633 ----------------------------------
4 files changed, 674 deletions(-)
delete mode 100644 include/dieharder/rgb_operm.h
delete mode 100644 libdieharder/rgb_operm.c
diff --git a/include/Makefile.am b/include/Makefile.am
index f80b4ff..e4659cd 100644
--- a/include/Makefile.am
+++ b/include/Makefile.am
@@ -33,7 +33,6 @@ nobase_include_HEADERS = dieharder/copyright.h \
dieharder/rgb_lagged_sums.h \
dieharder/rgb_lmn.h \
dieharder/rgb_minimum_distance.h \
- dieharder/rgb_operm.h \
dieharder/rgb_persist.h \
dieharder/rgb_permutations.h \
dieharder/rgb_timing.h \
diff --git a/include/dieharder/rgb_operm.h b/include/dieharder/rgb_operm.h
deleted file mode 100644
index c48fa37..0000000
--- a/include/dieharder/rgb_operm.h
+++ /dev/null
@@ -1,38 +0,0 @@
-/*
- * rgb_operm test header.
- */
-
-/*
- * function prototype
- */
-int rgb_operm(Test **test,int irun);
-
-static Dtest rgb_operm_dtest __attribute__((unused)) = {
- "RGB Overlapping Permuations Test",
- "rgb_operm",
- "\n\
-#========================================================================\n\
-# RGB Overlapping Permutations Test\n\
-# Forms both the exact (expected) covariance matrix for overlapping\n\
-# permutations of random integer and an empirical covariance matrix\n\
-# formed from a long string of samples. The difference is expected\n\
-# to have a chisq distribution and hence can be transformed into a\n\
-# sample p-value. Note that this is one possible functional replacement\n\
-# for the broken/defunct diehard operm5 test, but one that permits k (the\n\
-# number of numbers in the overlapping permutation window) to be varied\n\
-# from 2 to perhaps 8.\n\
-#\n",
- 100, /* Default psamples */
- 100000, /* Default tsamples */
- 1, /* We magically make all the bit tests return a single histogram */
- rgb_operm,
- 0
-};
-
-/*
- * Global variables.
- *
- * rgb_operm_k is the size of the overlapping window that is slid along
- * a data stream of rands from x_i to x_{i+k} to compute c[][].
- */
-unsigned int rgb_operm_k;
diff --git a/include/dieharder/tests.h b/include/dieharder/tests.h
index 1674aed..b50dbe3 100644
--- a/include/dieharder/tests.h
+++ b/include/dieharder/tests.h
@@ -11,7 +11,6 @@
#include <dieharder/rgb_kstest_test.h>
#include <dieharder/rgb_lagged_sums.h>
#include <dieharder/rgb_minimum_distance.h>
-#include <dieharder/rgb_operm.h>
#include <dieharder/rgb_permutations.h>
#include <dieharder/dab_bytedistrib.h>
#include <dieharder/dab_dct.h>
@@ -80,7 +79,6 @@
RGB_PERMUTATIONS,
RGB_LAGGED_SUMS,
RGB_LMN,
- RGB_OPERM,
DAB_BYTEDISTRIB,
DAB_DCT,
DAB_FILLTREE,
diff --git a/libdieharder/rgb_operm.c b/libdieharder/rgb_operm.c
deleted file mode 100644
index 15f8e9a..0000000
--- a/libdieharder/rgb_operm.c
+++ /dev/null
@@ -1,633 +0,0 @@
-/*
- * ========================================================================
- * $Id: rgb_operm.c 252 2006-10-10 13:17:36Z rgb $
- *
- * See copyright in copyright.h and the accompanying file COPYING
- * ========================================================================
- */
-
-/*
- * ========================================================================
- * This is the revised Overlapping Permutations test. It directly
- * simulates the covariance matrix of overlapping permutations. The way
- * this works below (tentatively) is:
- *
- * For a bit ntuple of length N, slide a window of length N to the
- * right one bit at a time. Compute the permutation index of the
- * original ntuple, the permutation index of the window ntuple, and
- * accumulate the covariance matrix of the two positions. This
- * can be directly and precisely computed as well. The simulated
- * result should be distributed according to the chisq distribution,
- * so we subtract the two and feed it into the chisq program as a
- * vector to compute p.
- *
- * This MAY NOT BE RIGHT. I'm working from both Marsaglia's limited
- * documentation (in a program that doesn't do ANYTHING like what the
- * documentation says it does) and from Nilpotent Markov Processes.
- * But I confess to not quite understand how to actually perform the
- * test in the latter -- it is very good at describing the construction
- * of the target matrix, not so good at describing how to transform
- * this into a chisq and p.
- *
- * FWIW, as I get something that actually works here, I'm going to
- * THOROUGHLY document it in the book that will accompany the test.
- *========================================================================
- */
-
-#include <dieharder/libdieharder.h>
-#define RGB_OPERM_KMAX 10
-
-/*
- * Some globals that will eventually go in the test include where they
- * arguably belong.
- */
-double fpipi(int pi1,int pi2,int nkp);
-uint piperm(size_t *data,int len);
-void make_cexact();
-void make_cexpt();
-int nperms,noperms;
-double **cexact,**ceinv,**cexpt,**idty;
-double *cvexact,*cvein,*cvexpt,*vidty;
-
-int rgb_operm(Test **test,int irun)
-{
-
- int i,j,n,nb,iv,s;
- uint csamples; /* rgb_operm_k^2 is vector size of cov matrix */
- uint *count,ctotal; /* counters */
- uint size;
- double pvalue,ntuple_prob,pbin; /* probabilities */
- Vtest *vtest; /* Chisq entry vector */
-
- gsl_matrix_view CEXACT,CEINV,CEXPT,IDTY;
-
- /*
- * For a given n = ntuple size in bits, there are n! bit orderings
- */
- MYDEBUG(D_RGB_OPERM){
- printf("#==================================================================\n");
- printf("# rgb_operm: Running rgb_operm verbosely for k = %d.\n",rgb_operm_k);
- printf("# rgb_operm: Use -v = %d to focus.\n",D_RGB_OPERM);
- printf("# rgb_operm: ======================================================\n");
- }
-
- /*
- * Sanity check first
- */
- if((rgb_operm_k < 0) || (rgb_operm_k > RGB_OPERM_KMAX)){
- printf("\nError: rgb_operm_k must be a positive integer <= %u. Exiting.\n",RGB_OPERM_KMAX);
- exit(0);
- }
-
- nperms = gsl_sf_fact(rgb_operm_k);
- noperms = gsl_sf_fact(3*rgb_operm_k-2);
- csamples = rgb_operm_k*rgb_operm_k;
- gsl_permutation * p = gsl_permutation_alloc(nperms);
-
- /*
- * Allocate memory for value_max vector of Vtest structs and counts,
- * PER TEST. Note that we must free both of these when we are done
- * or leak.
- */
- vtest = (Vtest *)malloc(csamples*sizeof(Vtest));
- count = (uint *)malloc(csamples*sizeof(uint));
- Vtest_create(vtest,csamples+1);
-
- /*
- * We have to allocate and free the cexact and cexpt matrices here
- * or they'll be forgotten when these routines return.
- */
- MYDEBUG(D_RGB_OPERM){
- printf("# rgb_operm: Creating and zeroing cexact[][] and cexpt[][].\n");
- }
- cexact = (double **)malloc(nperms*sizeof(double*));
- ceinv = (double **)malloc(nperms*sizeof(double*));
- cexpt = (double **)malloc(nperms*sizeof(double*));
- idty = (double **)malloc(nperms*sizeof(double*));
- cvexact = (double *)malloc(nperms*nperms*sizeof(double));
- cvein = (double *)malloc(nperms*nperms*sizeof(double));
- cvexpt = (double *)malloc(nperms*nperms*sizeof(double));
- vidty = (double *)malloc(nperms*nperms*sizeof(double));
- for(i=0;i<nperms;i++){
- /* Here we pack addresses to map the matrix addressing onto the vector */
- cexact[i] = &cvexact[i*nperms];
- ceinv[i] = &cvein[i*nperms];
- cexpt[i] = &cvexpt[i*nperms];
- idty[i] = &vidty[i*nperms];
- for(j = 0;j<nperms;j++){
- cexact[i][j] = 0.0;
- ceinv[i][j] = 0.0;
- cexpt[i][j] = 0.0;
- idty[i][j] = 0.0;
- }
- }
-
- make_cexact();
- make_cexpt();
-
- iv=0;
- for(i=0;i<nperms;i++){
- for(j=0;j<nperms;j++){
- cvexact[iv] = cexact[i][j];
- cvexpt[iv] = cexpt[i][j];
- vidty[iv] = 0.0;
- }
- }
-
- CEXACT = gsl_matrix_view_array(cvexact, nperms, nperms);
- CEINV = gsl_matrix_view_array(cvein , nperms, nperms);
- CEXPT = gsl_matrix_view_array(cvexpt , nperms, nperms);
- IDTY = gsl_matrix_view_array(vidty , nperms, nperms);
-
- /*
- * Hmmm, looks like cexact isn't invertible. Duh. So it has eigenvalues.
- * This seems to be important (how, I do not know) so let's find out.
- * Here is the gsl ritual for evaluating eigenvalues etc.
- */
-
- gsl_vector *eval = gsl_vector_alloc (nperms);
- gsl_matrix *evec = gsl_matrix_alloc (nperms,nperms);
- /*
- gsl_eigen_nonsymm_workspace* w = gsl_eigen_nonsymmv_alloc(nperms);
- gsl_eigen_nonsymm_params (1,0,w);
- gsl_eigen_nonsymmv(&CEXACT.matrix, eval, evec, w);
- gsl_eigen_nonsymmv_free (w);
- */
- gsl_eigen_symmv_workspace* w = gsl_eigen_symmv_alloc(nperms);
- gsl_eigen_symmv(&CEXACT.matrix, eval, evec, w);
- gsl_eigen_symmv_free (w);
- gsl_eigen_symmv_sort (eval, evec, GSL_EIGEN_SORT_ABS_ASC);
-
- {
- int i;
-
- printf("#==================================================================\n");
- for (i = 0; i < nperms; i++) {
- double eval_i = gsl_vector_get (eval, i);
- gsl_vector_view evec_i = gsl_matrix_column (evec, i);
- printf ("eigenvalue[%u] = %g\n", i, eval_i);
- printf ("eigenvector[%u] = \n",i);
- gsl_vector_fprintf (stdout,&evec_i.vector, "%10.5f");
- }
- printf("#==================================================================\n");
- }
-
- gsl_vector_free (eval);
- gsl_matrix_free (evec);
-
-/*
- gsl_linalg_LU_decomp(&CEXACT.matrix, p, &s);
- gsl_linalg_LU_invert(&CEXACT, p, &CEINV);
- gsl_permutation_free(p);
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &CEINV.matrix, &CEXPT.matrix, 0.0, &IDTY.matrix);
- printf("#==================================================================\n");
- printf("# Should be inverse of C, assuming it is invertible:\n");
- for(i=0;i<nperms;i++){
- printf("# ");
- for(j = 0;j<nperms;j++){
- printf("%8.3f ",idty[i][j]);
- }
- printf("\n");
- }
- printf("#==================================================================\n");
- printf("#==================================================================\n");
- printf("# Should be normal on identity:\n");
- for(i=0;i<nperms;i++){
- printf("# ");
- for(j = 0;j<nperms;j++){
- printf("%8.3f ",idty[i][j]);
- }
- printf("\n");
- }
- printf("#==================================================================\n");
- */
-
-
-
- /*
- * OK, at this point we have two matrices: cexact[][] is filled with
- * the exact covariance matrix expected for the overlapping permutations.
- * cexpt[][] has been filled numerically by generating strings of random
- * uints or floats, generating sort index permutations, and
- * using them to IDENTICALLY generate an "experimental" version of c[][].
- * The two should correspond, in the limit of large tsamples. IF I
- * understand Alhakim, Kawczak and Molchanov, then the way to implement
- * the simplest possible chisq test is to evaluate:
- * cexact^-1 cexpt \approx I
- * where the diagonal terms should form a vector that is chisq distributed?
- * Let's try this...
- */
-
-
-
- /*
- * Free cexact[][] and cexpt[][]
- * Fix this when we're done so we don't leak; for now to much trouble.
- for(i=0;i<nperms;i++){
- free(cexact[i]);
- free(cexpt[i]);
- }
- free(cexact);
- free(cexpt);
- */
-
- return(0);
-
-}
-
-void make_cexact()
-{
-
- int i,j,k,ip,t,nop;
- double fi,fj;
- /*
- * This is the test vector.
- */
- double testv[RGB_OPERM_KMAX*2]; /* easier than malloc etc, but beware length */
- /*
- * pi[] is the permutation index of a sample. ps[] holds the
- * actual sample.
- */
- size_t pi[4096],ps[4096];
- /*
- * We seem to have made a mistake of sorts. We actually have to sum
- * BOTH the forward AND the backward directions. That means that the
- * permutation vector has to be of length 3k-1, with the pi=1 term
- * corresponding to the middle. So for k=2, instead of 0,1,2 we need
- * 0 1 2 3 4 and we'll have to do 23, 34 in the leading direction and
- * 21, 10 in the trailing direction.
- */
- gsl_permutation **operms;
-
- MYDEBUG(D_RGB_OPERM){
- printf("#==================================================================\n");
- printf("# rgb_operm: Running cexact()\n");
- }
-
- /*
- * Test fpipi(). This is probably cruft, actually.
- MYDEBUG(D_RGB_OPERM){
- printf("# rgb_operm: Testing fpipi()\n");
- for(i=0;i<nperms;i++){
- for(j = 0;j<nperms;j++){
- printf("# rgb_operm: fpipi(%u,%u,%u) = %f\n",i,j,nperms,fpipi(i,j,nperms));
- }
- }
- }
- */
-
- MYDEBUG(D_RGB_OPERM){
- printf("#==================================================================\n");
- printf("# rgb_operm: Forming set of %u overlapping permutations\n",noperms);
- printf("# rgb_operm: Permutations\n");
- printf("# rgb_operm:==============================\n");
- }
- operms = (gsl_permutation**) malloc(noperms*sizeof(gsl_permutation*));
- for(i=0;i<noperms;i++){
- operms[i] = gsl_permutation_alloc(3*rgb_operm_k - 2);
- /* Must quiet down
- MYDEBUG(D_RGB_OPERM){
- printf("# rgb_operm: ");
- }
- */
- if(i == 0){
- gsl_permutation_init(operms[i]);
- } else {
- gsl_permutation_memcpy(operms[i],operms[i-1]);
- gsl_permutation_next(operms[i]);
- }
- /*
- MYDEBUG(D_RGB_OPERM){
- gsl_permutation_fprintf(stdout,operms[i]," %u");
- printf("\n");
- }
- */
- }
-
- /*
- * We now form c_exact PRECISELY the same way that we do c_expt[][]
- * below, except that instead of pulling random samples of integers
- * or floats and averaging over the permutations thus represented,
- * we iterate over the complete set of equally weighted permutations
- * to get an exact answer. Note that we have to center on 2k-1 and
- * go both forwards and backwards.
- */
- for(t=0;t<noperms;t++){
- /*
- * To sort into a perm, test vector needs to be double.
- */
- for(k=0;k<3*rgb_operm_k - 2;k++) testv[k] = (double) operms[t]->data[k];
-
- /* Not cruft, but quiet...
- MYDEBUG(D_RGB_OPERM){
- printf("#------------------------------------------------------------------\n");
- printf("# Generating offset sample permutation pi's\n");
- }
- */
- for(k=0;k<2*rgb_operm_k - 1;k++){
- gsl_sort_index((size_t *) ps,&testv[k],1,rgb_operm_k);
- pi[k] = piperm((size_t *) ps,rgb_operm_k);
-
- /* Not cruft, but quiet...
- MYDEBUG(D_RGB_OPERM){
- printf("# %u: ",k);
- for(ip=k;ip<rgb_operm_k+k;ip++){
- printf("%.1f ",testv[ip]);
- }
- printf("\n# ");
- for(ip=0;ip<rgb_operm_k;ip++){
- printf("%u ",ps[ip]);
- }
- printf(" = %u\n",pi[k]);
- }
- */
-
- }
-
- /*
- * This is the business end of things. The covariance matrix is the
- * the sum of a central function of the permutation indices that yields
- * nperms-1/nperms on diagonal, -1/nperms off diagonal, for all the
- * possible permutations, for the FIRST permutation in a sample (fi)
- * times the sum of the same function over all the overlapping permutations
- * drawn from the same sample. Quite simple, really.
- */
- for(i=0;i<nperms;i++){
- fi = fpipi(i,pi[rgb_operm_k-1],nperms);
- for(j=0;j<nperms;j++){
- fj = 0.0;
- for(k=0;k<rgb_operm_k;k++){
- fj += fpipi(j,pi[rgb_operm_k - 1 + k],nperms);
- if(k != 0){
- fj += fpipi(j,pi[rgb_operm_k - 1 - k],nperms);
- }
- }
- cexact[i][j] += fi*fj;
- }
- }
-
- }
-
- MYDEBUG(D_RGB_OPERM){
- printf("# rgb_operm:==============================\n");
- printf("# rgb_operm: cexact[][] = \n");
- }
- for(i=0;i<nperms;i++){
- MYDEBUG(D_RGB_OPERM){
- printf("# ");
- }
- for(j=0;j<nperms;j++){
- cexact[i][j] /= noperms;
- MYDEBUG(D_RGB_OPERM){
- printf("%10.6f ",cexact[i][j]);
- }
- }
- MYDEBUG(D_RGB_OPERM){
- printf("\n");
- }
- }
-
- /*
- * Free operms[]
- */
- for(i=0;i<noperms;i++){
- gsl_permutation_free(operms[i]);
- }
- free(operms);
-
-}
-
-void make_cexpt()
-{
-
- int i,j,k,ip,t;
- double fi,fj;
- /*
- * This is the test vector.
- */
- double testv[RGB_OPERM_KMAX*2]; /* easier than malloc etc, but beware length */
- /*
- * pi[] is the permutation index of a sample. ps[] holds the
- * actual sample.
- */
- int pi[4096],ps[4096];
-
- MYDEBUG(D_RGB_OPERM){
- printf("#==================================================================\n");
- printf("# rgb_operm: Running cexpt()\n");
- }
-
- /*
- * We evaluate cexpt[][] by sampling. In a nutshell, this involves
- * a) Filling testv[] with 2*rgb_operm_k - 1 random uints or doubles
- * It clearly cannot matter which we use, as long as the probability of
- * exact duplicates in a sample is very low.
- * b) Using gsl_sort_index the exact same way it was used in make_cexact()
- * to generate the pi[] index, using ps[] as scratch space for the sort
- * indices.
- * c) Evaluating fi and fj from the SAMPLED result, tsamples times.
- * d) Normalizing.
- * Note that this is pretty much identical to the way we formed c_exact[][]
- * except that we are determining the relative frequency of each sort order
- * permutation 2*rgb_operm_k-1 long.
- *
- * NOTE WELL! I honestly think that it is borderline silly to view
- * this as a matrix and to go through all of this nonsense. The theoretical
- * c_exact[][] is computed from the observation that all the permutations
- * of n objects have equal weight = 1/n!. Consequently, they should
- * individually be binomially distributed, tending to normal with many
- * samples. Collectively they should be distributed like a vector of
- * equal binomial probabilities and a p-value should follow either from
- * chisq on n!-1 DoF or for that matter a KS test. I see no way that
- * making it into a matrix can increase the sensitivity of the test -- if
- * the p-values are well defined in the two cases they can only be equal
- * by their very definition.
- *
- * If you are a statistician reading these words and disagree, please
- * communicate with me and explain why I'm wrong. I'm still very much
- * learning statistics and would cherish gentle correction.
- */
- for(t=0;t<tsamples;t++){
- /*
- * To sort into a perm, test vector needs to be double.
- */
- for(k=0;k<3*rgb_operm_k - 2;k++) testv[k] = (double) gsl_rng_get(rng);
-
- /* Not cruft, but quiet...
- MYDEBUG(D_RGB_OPERM){
- printf("#------------------------------------------------------------------\n");
- printf("# Generating offset sample permutation pi's\n");
- }
- */
- for(k=0;k<2*rgb_operm_k-1;k++){
- gsl_sort_index(ps,&testv[k],1,rgb_operm_k);
- pi[k] = piperm(ps,rgb_operm_k);
-
- /* Not cruft, but quiet...
- MYDEBUG(D_RGB_OPERM){
- printf("# %u: ",k);
- for(ip=k;ip<rgb_operm_k+k;ip++){
- printf("%.1f ",testv[ip]);
- }
- printf("\n# ");
- for(ip=0;ip<rgb_operm_k;ip++){
- printf("%u ",permsample->data[ip]);
- }
- printf(" = %u\n",pi[k]);
- }
- */
- }
-
- /*
- * This is the business end of things. The covariance matrix is the
- * the sum of a central function of the permutation indices that yields
- * nperms-1/nperms on diagonal, -1/nperms off diagonal, for all the
- * possible permutations, for the FIRST permutation in a sample (fi)
- * times the sum of the same function over all the overlapping permutations
- * drawn from the same sample. Quite simple, really.
- */
- for(i=0;i<nperms;i++){
- fi = fpipi(i,pi[rgb_operm_k-1],nperms);
- for(j=0;j<nperms;j++){
- fj = 0.0;
- for(k=0;k<rgb_operm_k;k++){
- fj += fpipi(j,pi[rgb_operm_k - 1 + k],nperms);
- if(k != 0){
- fj += fpipi(j,pi[rgb_operm_k - 1 - k],nperms);
- }
- }
- cexpt[i][j] += fi*fj;
- }
- }
-
- }
-
- MYDEBUG(D_RGB_OPERM){
- printf("# rgb_operm:==============================\n");
- printf("# rgb_operm: cexpt[][] = \n");
- }
- for(i=0;i<nperms;i++){
- MYDEBUG(D_RGB_OPERM){
- printf("# ");
- }
- for(j=0;j<nperms;j++){
- cexpt[i][j] /= tsamples;
- MYDEBUG(D_RGB_OPERM){
- printf("%10.6f ",cexpt[i][j]);
- }
- }
- MYDEBUG(D_RGB_OPERM){
- printf("\n");
- }
- }
-
-}
-
-uint piperm(size_t *data,int len)
-{
-
- uint i,j,k,max,min;
- uint pindex,uret,tmp;
- static gsl_permutation** lookup = 0;
-
- /*
- * Allocate space for lookup table and fill it.
- */
- if(lookup == 0){
- lookup = (gsl_permutation**) malloc(nperms*sizeof(gsl_permutation*));
- MYDEBUG(D_RGB_OPERM){
- printf("# rgb_operm: Allocating piperm lookup table of perms.\n");
- }
- for(i=0;i<nperms;i++){
- lookup[i] = gsl_permutation_alloc(rgb_operm_k);
- }
- for(i=0;i<nperms;i++){
- if(i == 0){
- gsl_permutation_init(lookup[i]);
- } else {
- gsl_permutation_memcpy(lookup[i],lookup[i-1]);
- gsl_permutation_next(lookup[i]);
- }
- }
-
- /*
- * This method yields a mirror symmetry in the permutations top to
- * bottom.
- for(i=0;i<nperms/2;i++){
- if(i == 0){
- gsl_permutation_init(lookup[i]);
- for(j=0;j<rgb_operm_k;j++){
- lookup[nperms-i-1]->data[rgb_operm_k-j-1] = lookup[i]->data[j];
- }
- } else {
- gsl_permutation_memcpy(lookup[i],lookup[i-1]);
- gsl_permutation_next(lookup[i]);
- for(j=0;j<rgb_operm_k;j++){
- lookup[nperms-i-1]->data[rgb_operm_k-j-1] = lookup[i]->data[j];
- }
- }
- }
- */
- MYDEBUG(D_RGB_OPERM){
- for(i=0;i<nperms;i++){
- printf("# rgb_operm: %u => ",i);
- gsl_permutation_fprintf(stdout,lookup[i]," %u");
- printf("\n");
- }
- }
-
- }
-
- for(i=0;i<nperms;i++){
- if(memcmp(data,lookup[i]->data,len*sizeof(uint))==0){
- /* Not cruft, but off:
- MYDEBUG(D_RGB_OPERM){
- printf("# piperm(): ");
- gsl_permutation_fprintf(stdout,lookup[i]," %u");
- printf(" = %u\n",i);
- }
- */
- return(i);
- }
- }
- printf("We'd better not get here...\n");
-
- return(0);
-
-}
-
-double fpipi(int pi1,int pi2,int nkp)
-{
-
- int i;
- double fret;
-
- /*
- * compute the k-permutation index from iperm for the window
- * at data[offset] of length len. If it matches pind, return
- * the first quantity, otherwise return the second.
- */
- if(pi1 == pi2){
-
- fret = (double) (nkp - 1.0)/nkp;
- if(verbose < 0){
- printf(" f(%d,%d) = %10.6f\n",pi1,pi2,fret);
- }
- return(fret);
-
- } else {
-
- fret = (double) (-1.0/nkp);
- if(verbose < 0){
- printf(" f(%d,%d) = %10.6f\n",pi1,pi2,fret);
- }
- return(fret);
-
- }
-
-
-}
-
-
-
-