################################################################################ # External toolchain package infrastructure # # This package infrastructure implements the support for external # toolchains, i.e toolchains that are available pre-built, ready to # use. Such toolchain may either be readily available on the Web # (Linaro, Sourcery CodeBench, from processor vendors) or may be built # with tools like Crosstool-NG or Buildroot itself. So far, we have # tested this with: # # * Toolchains generated by Crosstool-NG # * Toolchains generated by Buildroot # * Toolchains provided by Linaro for the ARM and AArch64 # architectures # * Sourcery CodeBench toolchains (from Mentor Graphics) for the ARM, # MIPS, PowerPC, x86_64 and NIOS 2 architectures. For the MIPS # toolchain, the -muclibc variant isn't supported yet, only the # default glibc-based variant is. # * Synopsys DesignWare toolchains for ARC cores # # The basic principle is the following # # 1. If the toolchain is not pre-installed, download and extract it # in $(TOOLCHAIN_EXTERNAL_INSTALL_DIR). Otherwise, # $(TOOLCHAIN_EXTERNAL_INSTALL_DIR) points to were the toolchain has # already been installed by the user. # # 2. For all external toolchains, perform some checks on the # conformity between the toolchain configuration described in the # Buildroot menuconfig system, and the real configuration of the # external toolchain. This is for example important to make sure that # the Buildroot configuration system knows whether the toolchain # supports RPC, IPv6, locales, large files, etc. Unfortunately, these # things cannot be detected automatically, since the value of these # options (such as BR2_TOOLCHAIN_HAS_NATIVE_RPC) are needed at # configuration time because these options are used as dependencies # for other options. And at configuration time, we are not able to # retrieve the external toolchain configuration. # # 3. Copy the libraries needed at runtime to the target directory, # $(TARGET_DIR). Obviously, things such as the C library, the dynamic # loader and a few other utility libraries are needed if dynamic # applications are to be executed on the target system. # # 4. Copy the libraries and headers to the staging directory. This # will allow all further calls to gcc to be made using --sysroot # $(STAGING_DIR), which greatly simplifies the compilation of the # packages when using external toolchains. So in the end, only the # cross-compiler binaries remains external, all libraries and headers # are imported into the Buildroot tree. # # 5. Build a toolchain wrapper which executes the external toolchain # with a number of arguments (sysroot/march/mtune/..) hardcoded, # so we're sure the correct configuration is always used and the # toolchain behaves similar to an internal toolchain. # This toolchain wrapper and symlinks are installed into # $(HOST_DIR)/bin like for the internal toolchains, and the rest # of Buildroot is handled identical for the 2 toolchain types. ################################################################################ # # Definitions of where the toolchain can be found # TOOLCHAIN_EXTERNAL_PREFIX = $(call qstrip,$(BR2_TOOLCHAIN_EXTERNAL_PREFIX)) TOOLCHAIN_EXTERNAL_DOWNLOAD_INSTALL_DIR = $(HOST_DIR)/opt/ext-toolchain ifeq ($(BR2_TOOLCHAIN_EXTERNAL_DOWNLOAD),y) TOOLCHAIN_EXTERNAL_INSTALL_DIR = $(TOOLCHAIN_EXTERNAL_DOWNLOAD_INSTALL_DIR) else TOOLCHAIN_EXTERNAL_INSTALL_DIR = $(abspath $(call qstrip,$(BR2_TOOLCHAIN_EXTERNAL_PATH))) endif ifeq ($(TOOLCHAIN_EXTERNAL_INSTALL_DIR),) ifneq ($(TOOLCHAIN_EXTERNAL_PREFIX),) # if no path set, figure it out from path TOOLCHAIN_EXTERNAL_BIN := $(dir $(shell which $(TOOLCHAIN_EXTERNAL_PREFIX)-gcc)) endif else TOOLCHAIN_EXTERNAL_REL_BIN_PATH = $(call qstrip,$(BR2_TOOLCHAIN_EXTERNAL_REL_BIN_PATH)) ifeq ($(TOOLCHAIN_EXTERNAL_REL_BIN_PATH),) TOOLCHAIN_EXTERNAL_REL_BIN_PATH = bin endif TOOLCHAIN_EXTERNAL_BIN = $(TOOLCHAIN_EXTERNAL_INSTALL_DIR)/$(TOOLCHAIN_EXTERNAL_REL_BIN_PATH) endif # If this is a buildroot toolchain, it already has a wrapper which we want to # bypass. Since this is only evaluated after it has been extracted, we can use # $(wildcard ...) here. TOOLCHAIN_EXTERNAL_SUFFIX = \ $(if $(wildcard $(TOOLCHAIN_EXTERNAL_BIN)/*.br_real),.br_real) TOOLCHAIN_EXTERNAL_CROSS = $(TOOLCHAIN_EXTERNAL_BIN)/$(TOOLCHAIN_EXTERNAL_PREFIX)- TOOLCHAIN_EXTERNAL_CC = $(TOOLCHAIN_EXTERNAL_CROSS)gcc$(TOOLCHAIN_EXTERNAL_SUFFIX) TOOLCHAIN_EXTERNAL_CXX = $(TOOLCHAIN_EXTERNAL_CROSS)g++$(TOOLCHAIN_EXTERNAL_SUFFIX) TOOLCHAIN_EXTERNAL_GDC = $(TOOLCHAIN_EXTERNAL_CROSS)gdc$(TOOLCHAIN_EXTERNAL_SUFFIX) TOOLCHAIN_EXTERNAL_FC = $(TOOLCHAIN_EXTERNAL_CROSS)gfortran$(TOOLCHAIN_EXTERNAL_SUFFIX) TOOLCHAIN_EXTERNAL_READELF = $(TOOLCHAIN_EXTERNAL_CROSS)readelf # Normal handling of downloaded toolchain tarball extraction. ifeq ($(BR2_TOOLCHAIN_EXTERNAL_DOWNLOAD),y) # As a regular package, the toolchain gets extracted in $(@D), but # since it's actually a fairly special package, we need it to be moved # into TOOLCHAIN_EXTERNAL_DOWNLOAD_INSTALL_DIR. define TOOLCHAIN_EXTERNAL_MOVE rm -rf $(TOOLCHAIN_EXTERNAL_DOWNLOAD_INSTALL_DIR) mkdir -p $(TOOLCHAIN_EXTERNAL_DOWNLOAD_INSTALL_DIR) mv $(@D)/* $(TOOLCHAIN_EXTERNAL_DOWNLOAD_INSTALL_DIR)/ endef endif # # Definitions of the list of libraries that should be copied to the target. # TOOLCHAIN_EXTERNAL_LIBS += ld*.so.* libgcc_s.so.* libatomic.so.* ifneq ($(BR2_SSP_NONE),y) TOOLCHAIN_EXTERNAL_LIBS += libssp.so.* endif ifeq ($(BR2_TOOLCHAIN_EXTERNAL_GLIBC)$(BR2_TOOLCHAIN_EXTERNAL_UCLIBC),y) TOOLCHAIN_EXTERNAL_LIBS += libc.so.* libcrypt.so.* libdl.so.* libm.so.* libnsl.so.* libresolv.so.* librt.so.* libutil.so.* ifeq ($(BR2_TOOLCHAIN_HAS_THREADS),y) TOOLCHAIN_EXTERNAL_LIBS += libpthread.so.* ifneq ($(BR2_PACKAGE_GDB)$(BR2_TOOLCHAIN_EXTERNAL_GDB_SERVER_COPY),) TOOLCHAIN_EXTERNAL_LIBS += libthread_db.so.* endif # gdbserver endif # ! no threads endif ifeq ($(BR2_TOOLCHAIN_EXTERNAL_GLIBC),y) TOOLCHAIN_EXTERNAL_LIBS += libnss_files.so.* libnss_dns.so.* libmvec.so.* libanl.so.* endif ifeq ($(BR2_TOOLCHAIN_EXTERNAL_MUSL),y) TOOLCHAIN_EXTERNAL_LIBS += libc.so endif ifeq ($(BR2_INSTALL_LIBSTDCPP),y) TOOLCHAIN_EXTERNAL_LIBS += libstdc++.so.* endif ifeq ($(BR2_TOOLCHAIN_HAS_FORTRAN),y) TOOLCHAIN_EXTERNAL_LIBS += libgfortran.so.* # fortran needs quadmath on x86 and x86_64 ifeq ($(BR2_TOOLCHAIN_HAS_LIBQUADMATH),y) TOOLCHAIN_EXTERNAL_LIBS += libquadmath.so* endif endif ifeq ($(BR2_TOOLCHAIN_HAS_OPENMP),y) TOOLCHAIN_EXTERNAL_LIBS += libgomp.so.* endif ifeq ($(BR2_TOOLCHAIN_HAS_DLANG),y) TOOLCHAIN_EXTERNAL_LIBS += libgdruntime.so* libgphobos.so* endif TOOLCHAIN_EXTERNAL_LIBS += $(addsuffix .so*,$(call qstrip,$(BR2_TOOLCHAIN_EXTRA_LIBS))) # # Definition of the CFLAGS to use with the external toolchain, as well as the # common toolchain wrapper build arguments # # march/mtune/floating point mode needs to be passed to the external toolchain # to select the right multilib variant ifeq ($(BR2_x86_64),y) TOOLCHAIN_EXTERNAL_CFLAGS += -m64 TOOLCHAIN_EXTERNAL_TOOLCHAIN_WRAPPER_ARGS += -DBR_64 endif ifneq ($(GCC_TARGET_ARCH),) TOOLCHAIN_EXTERNAL_CFLAGS += -march=$(GCC_TARGET_ARCH) TOOLCHAIN_EXTERNAL_TOOLCHAIN_WRAPPER_ARGS += -DBR_ARCH='"$(GCC_TARGET_ARCH)"' endif ifneq ($(GCC_TARGET_CPU),) TOOLCHAIN_EXTERNAL_CFLAGS += -mcpu=$(GCC_TARGET_CPU) TOOLCHAIN_EXTERNAL_TOOLCHAIN_WRAPPER_ARGS += -DBR_CPU='"$(GCC_TARGET_CPU)"' endif ifneq ($(GCC_TARGET_ABI),) TOOLCHAIN_EXTERNAL_CFLAGS += -mabi=$(GCC_TARGET_ABI) TOOLCHAIN_EXTERNAL_TOOLCHAIN_WRAPPER_ARGS += -DBR_ABI='"$(GCC_TARGET_ABI)"' endif ifeq ($(BR2_TOOLCHAIN_HAS_MNAN_OPTION),y) ifneq ($(GCC_TARGET_NAN),) TOOLCHAIN_EXTERNAL_CFLAGS += -mnan=$(GCC_TARGET_NAN) TOOLCHAIN_EXTERNAL_TOOLCHAIN_WRAPPER_ARGS += -DBR_NAN='"$(GCC_TARGET_NAN)"' endif endif ifneq ($(GCC_TARGET_FP32_MODE),) TOOLCHAIN_EXTERNAL_CFLAGS += -mfp$(GCC_TARGET_FP32_MODE) TOOLCHAIN_EXTERNAL_TOOLCHAIN_WRAPPER_ARGS += -DBR_FP32_MODE='"$(GCC_TARGET_FP32_MODE)"' endif ifneq ($(GCC_TARGET_FPU),) TOOLCHAIN_EXTERNAL_CFLAGS += -mfpu=$(GCC_TARGET_FPU) TOOLCHAIN_EXTERNAL_TOOLCHAIN_WRAPPER_ARGS += -DBR_FPU='"$(GCC_TARGET_FPU)"' endif ifneq ($(GCC_TARGET_FLOAT_ABI),) TOOLCHAIN_EXTERNAL_CFLAGS += -mfloat-abi=$(GCC_TARGET_FLOAT_ABI) TOOLCHAIN_EXTERNAL_TOOLCHAIN_WRAPPER_ARGS += -DBR_FLOAT_ABI='"$(GCC_TARGET_FLOAT_ABI)"' endif ifneq ($(GCC_TARGET_MODE),) TOOLCHAIN_EXTERNAL_CFLAGS += -m$(GCC_TARGET_MODE) TOOLCHAIN_EXTERNAL_TOOLCHAIN_WRAPPER_ARGS += -DBR_MODE='"$(GCC_TARGET_MODE)"' endif ifeq ($(BR2_BINFMT_FLAT),y) TOOLCHAIN_EXTERNAL_CFLAGS += -Wl,-elf2flt TOOLCHAIN_EXTERNAL_TOOLCHAIN_WRAPPER_ARGS += -DBR_BINFMT_FLAT endif ifeq ($(BR2_mipsel)$(BR2_mips64el),y) TOOLCHAIN_EXTERNAL_TOOLCHAIN_WRAPPER_ARGS += -DBR_MIPS_TARGET_LITTLE_ENDIAN TOOLCHAIN_EXTERNAL_CFLAGS += -EL endif ifeq ($(BR2_mips)$(BR2_mips64),y) TOOLCHAIN_EXTERNAL_TOOLCHAIN_WRAPPER_ARGS += -DBR_MIPS_TARGET_BIG_ENDIAN TOOLCHAIN_EXTERNAL_CFLAGS += -EB endif ifeq ($(BR2_arceb),y) TOOLCHAIN_EXTERNAL_TOOLCHAIN_WRAPPER_ARGS += -DBR_ARC_TARGET_BIG_ENDIAN TOOLCHAIN_EXTERNAL_CFLAGS += -EB endif TOOLCHAIN_EXTERNAL_CFLAGS += $(call qstrip,$(BR2_TARGET_OPTIMIZATION)) ifeq ($(BR2_SOFT_FLOAT),y) TOOLCHAIN_EXTERNAL_CFLAGS += -msoft-float TOOLCHAIN_EXTERNAL_TOOLCHAIN_WRAPPER_ARGS += -DBR_SOFTFLOAT=1 endif TOOLCHAIN_EXTERNAL_TOOLCHAIN_WRAPPER_ARGS += \ -DBR_CROSS_PATH_SUFFIX='"$(TOOLCHAIN_EXTERNAL_SUFFIX)"' ifeq ($(filter $(HOST_DIR)/%,$(TOOLCHAIN_EXTERNAL_BIN)),) # TOOLCHAIN_EXTERNAL_BIN points outside HOST_DIR => absolute path TOOLCHAIN_EXTERNAL_TOOLCHAIN_WRAPPER_ARGS += \ -DBR_CROSS_PATH_ABS='"$(TOOLCHAIN_EXTERNAL_BIN)"' else # TOOLCHAIN_EXTERNAL_BIN points inside HOST_DIR => relative path TOOLCHAIN_EXTERNAL_TOOLCHAIN_WRAPPER_ARGS += \ -DBR_CROSS_PATH_REL='"$(TOOLCHAIN_EXTERNAL_BIN:$(HOST_DIR)/%=%)"' endif # # The following functions creates the symbolic links needed to get the # cross-compilation tools visible in $(HOST_DIR)/bin. Some of # links are done directly to the corresponding tool in the external # toolchain installation directory, while some other links are done to # the toolchain wrapper (preprocessor, C, C++ and Fortran compiler) # # We skip gdb symlink when we are building our own gdb to prevent two # gdb's in $(HOST_DIR)/bin. # # The LTO support in gcc creates wrappers for ar, ranlib and nm which load # the lto plugin. These wrappers are called *-gcc-ar, *-gcc-ranlib, and # *-gcc-nm and should be used instead of the real programs when -flto is # used. However, we should not add the toolchain wrapper for them, and they # match the *cc-* pattern. Therefore, an additional case is added for *-ar, # *-ranlib and *-nm. define TOOLCHAIN_EXTERNAL_INSTALL_WRAPPER $(Q)cd $(HOST_DIR)/bin; \ for i in $(TOOLCHAIN_EXTERNAL_CROSS)*; do \ base=$${i##*/}; \ case "$$base" in \ *-ar|*-ranlib|*-nm) \ ln -sf $$(echo $$i | sed 's%^$(HOST_DIR)%..%') .; \ ;; \ *cc|*cc-*|*++|*++-*|*cpp|*-gfortran|*-gdc) \ ln -sf toolchain-wrapper $$base; \ ;; \ *gdb|*gdbtui) \ if test "$(BR2_PACKAGE_HOST_GDB)" != "y"; then \ ln -sf $$(echo $$i | sed 's%^$(HOST_DIR)%..%') .; \ fi \ ;; \ *) \ ln -sf $$(echo $$i | sed 's%^$(HOST_DIR)%..%') .; \ ;; \ esac; \ done endef # Various utility functions used by the external toolchain package # infrastructure. Those functions are mainly responsible for: # # - installation the toolchain libraries to $(TARGET_DIR) # - copying the toolchain sysroot to $(STAGING_DIR) # - installing a gdbinit file # # Details about sysroot directory selection. # # To find the sysroot directory, we use the trick of looking for the # 'libc.a' file with the -print-file-name gcc option, and then # mangling the path to find the base directory of the sysroot. # # Note that we do not use the -print-sysroot option, because it is # only available since gcc 4.4.x, and we only recently dropped support # for 4.2.x and 4.3.x. # # When doing this, we don't pass any option to gcc that could select a # multilib variant (such as -march) as we want the "main" sysroot, # which contains all variants of the C library in the case of multilib # toolchains. We use the TARGET_CC_NO_SYSROOT variable, which is the # path of the cross-compiler, without the --sysroot=$(STAGING_DIR), # since what we want to find is the location of the original toolchain # sysroot. This "main" sysroot directory is stored in SYSROOT_DIR. # # Then, multilib toolchains are a little bit more complicated, since # they in fact have multiple sysroots, one for each variant supported # by the toolchain. So we need to find the particular sysroot we're # interested in. # # To do so, we ask the compiler where its sysroot is by passing all # flags (including -march and al.), except the --sysroot flag since we # want to the compiler to tell us where its original sysroot # is. ARCH_SUBDIR will contain the subdirectory, in the main # SYSROOT_DIR, that corresponds to the selected architecture # variant. ARCH_SYSROOT_DIR will contain the full path to this # location. # # One might wonder why we don't just bother with ARCH_SYSROOT_DIR. The # fact is that in multilib toolchains, the header files are often only # present in the main sysroot, and only the libraries are available in # each variant-specific sysroot directory. # toolchain_find_sysroot returns the sysroot location for the given # compiler + flags. We need to handle cases where libc.a is in: # # - lib/ # - usr/lib/ # - lib32/ # - lib64/ # - lib32-fp/ (Cavium toolchain) # - lib64-fp/ (Cavium toolchain) # - usr/lib// (Linaro toolchain) # # And variations on these. define toolchain_find_sysroot $$(printf $(call toolchain_find_libc_a,$(1)) | sed -r -e 's:/(usr/)?lib(32|64)?([^/]*)?/([^/]*/)?libc\.a:/:') endef # Returns the lib subdirectory for the given compiler + flags (i.e # typically lib32 or lib64 for some toolchains) define toolchain_find_libdir $$(printf $(call toolchain_find_libc_a,$(1)) | sed -r -e 's:.*/(usr/)?(lib(32|64)?([^/]*)?(/[^/]*)?)/libc.a:\2:') endef # Returns the location of the libc.a file for the given compiler + flags define toolchain_find_libc_a $$(readlink -f $$(LANG=C $(1) -print-file-name=libc.a)) endef # Integration of the toolchain into Buildroot: find the main sysroot # and the variant-specific sysroot, then copy the needed libraries to # the $(TARGET_DIR) and copy the whole sysroot (libraries and headers) # to $(STAGING_DIR). # # Variables are defined as follows: # # SYSROOT_DIR: the main sysroot directory, deduced from the location of # the libc.a file in the default multilib variant, by # removing the usr/lib[32|64]/libc.a part of the path. # Ex: /x-tools/mips-2011.03/mips-linux-gnu/libc/ # # ARCH_SYSROOT_DIR: the sysroot of the selected multilib variant, # deduced from the location of the libc.a file in the # selected multilib variant (taking into account the # CFLAGS), by removing usr/lib[32|64]/libc.a at the end # of the path. # Ex: /x-tools/mips-2011.03/mips-linux-gnu/libc/mips16/soft-float/el/ # # ARCH_LIB_DIR: 'lib', 'lib32' or 'lib64' depending on where libraries # are stored. Deduced from the location of the libc.a file # in the selected multilib variant, by looking at # usr/lib??/libc.a. # Ex: lib # # ARCH_SUBDIR: the relative location of the sysroot of the selected # multilib variant compared to the main sysroot. # Ex: mips16/soft-float/el # # SUPPORT_LIB_DIR: some toolchains, such as recent Linaro toolchains, # store GCC support libraries (libstdc++, # libgcc_s, etc.) outside of the sysroot. In # this case, SUPPORT_LIB_DIR is set to a # non-empty value, and points to the directory # where these support libraries are # available. Those libraries will be copied to # our sysroot, and the directory will also be # considered when searching libraries for copy # to the target filesystem. # # Please be very careful to check the major toolchain sources: # Buildroot, Crosstool-NG, CodeSourcery and Linaro # before doing any modification on the below logic. ifeq ($(BR2_STATIC_LIBS),) define TOOLCHAIN_EXTERNAL_INSTALL_TARGET_LIBS $(Q)$(call MESSAGE,"Copying external toolchain libraries to target...") $(Q)for libpattern in $(TOOLCHAIN_EXTERNAL_LIBS); do \ $(call copy_toolchain_lib_root,$$libpattern); \ done endef endif ifeq ($(BR2_TOOLCHAIN_EXTERNAL_GDB_SERVER_COPY),y) define TOOLCHAIN_EXTERNAL_INSTALL_TARGET_GDBSERVER $(Q)$(call MESSAGE,"Copying gdbserver") $(Q)ARCH_SYSROOT_DIR="$(call toolchain_find_sysroot,$(TOOLCHAIN_EXTERNAL_CC) $(TOOLCHAIN_EXTERNAL_CFLAGS))" ; \ ARCH_LIB_DIR="$(call toolchain_find_libdir,$(TOOLCHAIN_EXTERNAL_CC) $(TOOLCHAIN_EXTERNAL_CFLAGS))" ; \ gdbserver_found=0 ; \ for d in $${ARCH_SYSROOT_DIR}/usr \ $${ARCH_SYSROOT_DIR}/../debug-root/usr \ $${ARCH_SYSROOT_DIR}/usr/$${ARCH_LIB_DIR} \ $(TOOLCHAIN_EXTERNAL_INSTALL_DIR); do \ if test -f $${d}/bin/gdbserver ; then \ install -m 0755 -D $${d}/bin/gdbserver $(TARGET_DIR)/usr/bin/gdbserver ; \ gdbserver_found=1 ; \ break ; \ fi ; \ done ; \ if [ $${gdbserver_found} -eq 0 ] ; then \ echo "Could not find gdbserver in external toolchain" ; \ exit 1 ; \ fi endef endif define TOOLCHAIN_EXTERNAL_INSTALL_SYSROOT_LIBS $(Q)SYSROOT_DIR="$(call toolchain_find_sysroot,$(TOOLCHAIN_EXTERNAL_CC))" ; \ ARCH_SYSROOT_DIR="$(call toolchain_find_sysroot,$(TOOLCHAIN_EXTERNAL_CC) $(TOOLCHAIN_EXTERNAL_CFLAGS))" ; \ ARCH_LIB_DIR="$(call toolchain_find_libdir,$(TOOLCHAIN_EXTERNAL_CC) $(TOOLCHAIN_EXTERNAL_CFLAGS))" ; \ SUPPORT_LIB_DIR="" ; \ if test `find $${ARCH_SYSROOT_DIR} -name 'libstdc++.a' | wc -l` -eq 0 ; then \ LIBSTDCPP_A_LOCATION=$$(LANG=C $(TOOLCHAIN_EXTERNAL_CC) $(TOOLCHAIN_EXTERNAL_CFLAGS) -print-file-name=libstdc++.a) ; \ if [ -e "$${LIBSTDCPP_A_LOCATION}" ]; then \ SUPPORT_LIB_DIR=`readlink -f $${LIBSTDCPP_A_LOCATION} | sed -r -e 's:libstdc\+\+\.a::'` ; \ fi ; \ fi ; \ if [ "$${SYSROOT_DIR}" == "$${ARCH_SYSROOT_DIR}" ] ; then \ ARCH_SUBDIR="" ; \ elif [ "`dirname $${ARCH_SYSROOT_DIR}`" = "`dirname $${SYSROOT_DIR}`" ] ; then \ SYSROOT_DIR_DIRNAME=`dirname $${SYSROOT_DIR}`/ ; \ ARCH_SUBDIR=`echo $${ARCH_SYSROOT_DIR} | sed -r -e "s:^$${SYSROOT_DIR_DIRNAME}(.*)/$$:\1:"` ; \ else \ ARCH_SUBDIR=`echo $${ARCH_SYSROOT_DIR} | sed -r -e "s:^$${SYSROOT_DIR}(.*)/$$:\1:"` ; \ fi ; \ $(call MESSAGE,"Copying external toolchain sysroot to staging...") ; \ $(call copy_toolchain_sysroot,$${SYSROOT_DIR},$${ARCH_SYSROOT_DIR},$${ARCH_SUBDIR},$${ARCH_LIB_DIR},$${SUPPORT_LIB_DIR}) endef # Create a symlink from (usr/)$(ARCH_LIB_DIR) to lib. # Note: the skeleton package additionally creates lib32->lib or lib64->lib # (as appropriate) # # $1: destination directory (TARGET_DIR / STAGING_DIR) create_lib_symlinks = \ $(Q)DESTDIR="$(strip $1)" ; \ ARCH_LIB_DIR="$(call toolchain_find_libdir,$(TOOLCHAIN_EXTERNAL_CC) $(TOOLCHAIN_EXTERNAL_CFLAGS))" ; \ if [ ! -e "$${DESTDIR}/$${ARCH_LIB_DIR}" -a ! -e "$${DESTDIR}/usr/$${ARCH_LIB_DIR}" ]; then \ relpath="$(call relpath_prefix,$${ARCH_LIB_DIR})" ; \ ln -snf $${relpath}lib "$${DESTDIR}/$${ARCH_LIB_DIR}" ; \ ln -snf $${relpath}lib "$${DESTDIR}/usr/$${ARCH_LIB_DIR}" ; \ fi define TOOLCHAIN_EXTERNAL_CREATE_STAGING_LIB_SYMLINK $(call create_lib_symlinks,$(STAGING_DIR)) endef define TOOLCHAIN_EXTERNAL_CREATE_TARGET_LIB_SYMLINK $(call create_lib_symlinks,$(TARGET_DIR)) endef # # Generate gdbinit file for use with Buildroot # define TOOLCHAIN_EXTERNAL_INSTALL_GDBINIT $(Q)if test -f $(TARGET_CROSS)gdb ; then \ $(call MESSAGE,"Installing gdbinit"); \ $(gen_gdbinit_file); \ fi endef # GCC installs a libstdcxx-...so-gdb.py file that gdb will load automatically, # but it contains hardcoded paths referring to the location where the (external) # toolchain was built. Fix up these paths so that the pretty printers can be # loaded automatically. # By default, the pretty printers are installed in # $(datadir)/gcc-$(gcc_version)/python but this could have been overwritten with # the gcc configure option: --with-python-dir. We thus have to search the # correct path first. define TOOLCHAIN_EXTERNAL_FIXUP_PRETTY_PRINTER_LOADER $(Q)loadfiles=$$(find $(STAGING_DIR) -name 'libstdc++.so*-gdb.py' 2>/dev/null); \ pythondir=$$(find $(TOOLCHAIN_EXTERNAL_DOWNLOAD_INSTALL_DIR) -path '*/libstdcxx/__init__.py' 2>/dev/null | sed 's%/libstdcxx/__init__.py%%' | head -n1); \ if [ -n "$$loadfiles" ] && [ -n "$$pythondir" ]; then \ echo "Fixing up hardcoded paths in GDB pretty-printer auto-load file(s) for libstdcxx: $$loadfiles"; \ sed -ri \ -e 's%^libdir\s*=.*%libdir = "$(STAGING_DIR)/lib"%' \ -e "s%^pythondir\s*=.*%pythondir = '$$pythondir'%" \ $$loadfiles; \ fi endef # uClibc-ng dynamic loader is called ld-uClibc.so.1, but gcc is not # patched specifically for uClibc-ng, so it continues to generate # binaries that expect the dynamic loader to be named ld-uClibc.so.0, # like with the original uClibc. Therefore, we create an additional # symbolic link to make uClibc-ng systems work properly. define TOOLCHAIN_EXTERNAL_FIXUP_UCLIBCNG_LDSO $(Q)if test -e $(TARGET_DIR)/lib/ld-uClibc.so.1; then \ ln -sf ld-uClibc.so.1 $(TARGET_DIR)/lib/ld-uClibc.so.0 ; \ fi $(Q)if test -e $(TARGET_DIR)/lib/ld64-uClibc.so.1; then \ ln -sf ld64-uClibc.so.1 $(TARGET_DIR)/lib/ld64-uClibc.so.0 ; \ fi endef define TOOLCHAIN_EXTERNAL_INSTALL_TARGET_LDD $(Q)if test -f $(STAGING_DIR)/usr/bin/ldd ; then \ $(INSTALL) -D $(STAGING_DIR)/usr/bin/ldd $(TARGET_DIR)/usr/bin/ldd ; \ $(SED) 's:.*/bin/bash:#!/bin/sh:' $(TARGET_DIR)/usr/bin/ldd ; \ fi endef ################################################################################ # inner-toolchain-external-package -- defines the generic installation rules # for external toolchain packages # # argument 1 is the lowercase package name # argument 2 is the uppercase package name, including a HOST_ prefix # for host packages # argument 3 is the uppercase package name, without the HOST_ prefix # for host packages # argument 4 is the type (target or host) ################################################################################ define inner-toolchain-external-package $(2)_INSTALL_STAGING = YES $(2)_ADD_TOOLCHAIN_DEPENDENCY = NO # In fact, we don't need to download the toolchain, since it is already # available on the system, so force the site and source to be empty so # that nothing will be downloaded/extracted. ifeq ($$(BR2_TOOLCHAIN_EXTERNAL_PREINSTALLED),y) $(2)_SITE = $(2)_SOURCE = endif ifeq ($$(BR2_TOOLCHAIN_EXTERNAL_DOWNLOAD),y) $(2)_EXCLUDES = usr/lib/locale/* $(2)_POST_EXTRACT_HOOKS += \ TOOLCHAIN_EXTERNAL_MOVE endif # Checks for an already installed toolchain: check the toolchain # location, check that it is usable, and then verify that it # matches the configuration provided in Buildroot: ABI, C++ support, # kernel headers version, type of C library and all C library features. define $(2)_CONFIGURE_CMDS $$(Q)$$(call check_cross_compiler_exists,$$(TOOLCHAIN_EXTERNAL_CC)) $$(Q)$$(call check_unusable_toolchain,$$(TOOLCHAIN_EXTERNAL_CC)) $$(Q)SYSROOT_DIR="$$(call toolchain_find_sysroot,$$(TOOLCHAIN_EXTERNAL_CC))" ; \ $$(call check_kernel_headers_version,\ $$(BUILD_DIR),\ $$(call toolchain_find_sysroot,$$(TOOLCHAIN_EXTERNAL_CC)),\ $$(call qstrip,$$(BR2_TOOLCHAIN_HEADERS_AT_LEAST)),\ $$(if $$(BR2_TOOLCHAIN_EXTERNAL_CUSTOM),loose,strict)); \ $$(call check_gcc_version,$$(TOOLCHAIN_EXTERNAL_CC),\ $$(call qstrip,$$(BR2_TOOLCHAIN_GCC_AT_LEAST))); \ if test "$$(BR2_arm)" = "y" ; then \ $$(call check_arm_abi,\ "$$(TOOLCHAIN_EXTERNAL_CC) $$(TOOLCHAIN_EXTERNAL_CFLAGS)") ; \ fi ; \ if test "$$(BR2_INSTALL_LIBSTDCPP)" = "y" ; then \ $$(call check_cplusplus,$$(TOOLCHAIN_EXTERNAL_CXX)) ; \ fi ; \ if test "$$(BR2_TOOLCHAIN_HAS_DLANG)" = "y" ; then \ $$(call check_dlang,$$(TOOLCHAIN_EXTERNAL_GDC)) ; \ fi ; \ if test "$$(BR2_TOOLCHAIN_HAS_FORTRAN)" = "y" ; then \ $$(call check_fortran,$$(TOOLCHAIN_EXTERNAL_FC)) ; \ fi ; \ if test "$$(BR2_TOOLCHAIN_HAS_OPENMP)" = "y" ; then \ $$(call check_openmp,$$(TOOLCHAIN_EXTERNAL_CC)) ; \ fi ; \ if test "$$(BR2_TOOLCHAIN_EXTERNAL_UCLIBC)" = "y" ; then \ $$(call check_uclibc,$$$${SYSROOT_DIR}) ; \ elif test "$$(BR2_TOOLCHAIN_EXTERNAL_MUSL)" = "y" ; then \ $$(call check_musl,\ "$$(TOOLCHAIN_EXTERNAL_CC) $$(TOOLCHAIN_EXTERNAL_CFLAGS)") ; \ else \ $$(call check_glibc,$$$${SYSROOT_DIR}) ; \ fi $$(Q)$$(call check_toolchain_ssp,$$(TOOLCHAIN_EXTERNAL_CC),$(BR2_SSP_OPTION)) endef $(2)_TOOLCHAIN_WRAPPER_ARGS += $$(TOOLCHAIN_EXTERNAL_TOOLCHAIN_WRAPPER_ARGS) $(2)_BUILD_CMDS = $$(TOOLCHAIN_WRAPPER_BUILD) define $(2)_INSTALL_STAGING_CMDS $$(TOOLCHAIN_WRAPPER_INSTALL) $$(TOOLCHAIN_EXTERNAL_CREATE_STAGING_LIB_SYMLINK) $$(TOOLCHAIN_EXTERNAL_INSTALL_SYSROOT_LIBS) $$(TOOLCHAIN_EXTERNAL_INSTALL_WRAPPER) $$(TOOLCHAIN_EXTERNAL_INSTALL_GDBINIT) $$(TOOLCHAIN_EXTERNAL_FIXUP_PRETTY_PRINTER_LOADER) endef # Even though we're installing things in both the staging, the host # and the target directory, we do everything within the # install-staging step, arbitrarily. define $(2)_INSTALL_TARGET_CMDS $$(TOOLCHAIN_EXTERNAL_CREATE_TARGET_LIB_SYMLINK) $$(TOOLCHAIN_EXTERNAL_INSTALL_TARGET_LIBS) $$(TOOLCHAIN_EXTERNAL_INSTALL_TARGET_GDBSERVER) $$(TOOLCHAIN_EXTERNAL_FIXUP_UCLIBCNG_LDSO) $$(TOOLCHAIN_EXTERNAL_INSTALL_TARGET_LDD) endef # Call the generic package infrastructure to generate the necessary # make targets $(call inner-generic-package,$(1),$(2),$(3),$(4)) endef toolchain-external-package = $(call inner-toolchain-external-package,$(pkgname),$(call UPPERCASE,$(pkgname)),$(call UPPERCASE,$(pkgname)),target)