4059 lines
148 KiB
Diff
4059 lines
148 KiB
Diff
|
From 085e4dcf8173e91311fbf9037d8bc9393f254c6f Mon Sep 17 00:00:00 2001
|
||
|
From: Daniel Black <daniel@linux.ibm.com>
|
||
|
Date: Fri, 17 Apr 2020 18:54:37 +1000
|
||
|
Subject: [PATCH] replace POWER crc32c with C implementation
|
||
|
|
||
|
The presence of clang compile failures on POWER due to
|
||
|
missing ppc-asm.h prompted the replacement of the ASM
|
||
|
CRC32 implementation with the C implementation.
|
||
|
|
||
|
https://github.com/antonblanchard/crc32-vpmsum/blob/master/vec_crc32.c
|
||
|
is used with only small include path change with the local copyright header
|
||
|
maintained.
|
||
|
|
||
|
crc32c_ppc_constants.h per upstream generated, with assembler
|
||
|
compatible code removed. #pragma once per 64324e329eb0a9b4e77241a425a1615ff524c7f1
|
||
|
removed unnecessary header wasn't used in util/crc32c.cc.
|
||
|
|
||
|
util/crc32c.cc removes arch_ppc_crc32 which was only ever
|
||
|
used in a local context. Also incorporated significant advice from
|
||
|
tchaikov in #2869. HAVE_POWER was never passed from cmake, so replaced
|
||
|
with the architected _ARCH_PWR8 directive. Altivec overloading removed.
|
||
|
|
||
|
Replaced arch_ppc_probe wrapper to used isAltivec directly.
|
||
|
|
||
|
Corrects getauxval detection from 8bbd76edbf by including the header from the
|
||
|
right directory.
|
||
|
|
||
|
From the crc32c_ppc.c (now replaced) comment:
|
||
|
|
||
|
This wrapper function works around the fact that crc32_vpmsum
|
||
|
does not gracefully handle the case where the data pointer is NULL. There
|
||
|
may be room for performance improvement here.
|
||
|
|
||
|
This isn't applicable provided the length is 0. Added test case for
|
||
|
this.
|
||
|
|
||
|
[Retrieved from:
|
||
|
https://github.com/facebook/rocksdb/commit/085e4dcf8173e91311fbf9037d8bc9393f254c6f]
|
||
|
Signed-off-by: Fabrice Fontaine <fontaine.fabrice@gmail.com>
|
||
|
---
|
||
|
CMakeLists.txt | 19 +-
|
||
|
Makefile | 44 +-
|
||
|
util/crc32c.cc | 59 +-
|
||
|
util/crc32c_ppc.c | 679 ++++++++-
|
||
|
util/crc32c_ppc_asm.S | 752 ----------
|
||
|
util/crc32c_ppc_clang_workaround.h | 93 ++
|
||
|
util/crc32c_ppc_constants.h | 2084 ++++++++++++++++------------
|
||
|
util/crc32c_test.cc | 3 +
|
||
|
8 files changed, 1943 insertions(+), 1790 deletions(-)
|
||
|
delete mode 100644 util/crc32c_ppc_asm.S
|
||
|
create mode 100644 util/crc32c_ppc_clang_workaround.h
|
||
|
|
||
|
diff --git a/CMakeLists.txt b/CMakeLists.txt
|
||
|
index 7a9bc71f80..5f8b226d51 100644
|
||
|
--- a/CMakeLists.txt
|
||
|
+++ b/CMakeLists.txt
|
||
|
@@ -39,7 +39,7 @@ include(ReadVersion)
|
||
|
get_rocksdb_version(rocksdb_VERSION)
|
||
|
project(rocksdb
|
||
|
VERSION ${rocksdb_VERSION}
|
||
|
- LANGUAGES CXX C ASM)
|
||
|
+ LANGUAGES CXX C)
|
||
|
|
||
|
if(POLICY CMP0042)
|
||
|
cmake_policy(SET CMP0042 NEW)
|
||
|
@@ -215,12 +215,6 @@ if(CMAKE_SYSTEM_PROCESSOR MATCHES "^(powerpc|ppc)64")
|
||
|
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mcpu=power8 -mtune=power8")
|
||
|
endif(HAS_POWER8)
|
||
|
endif(HAS_POWER9)
|
||
|
- CHECK_C_COMPILER_FLAG("-maltivec" HAS_ALTIVEC)
|
||
|
- if(HAS_ALTIVEC)
|
||
|
- message(STATUS " HAS_ALTIVEC yes")
|
||
|
- set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -maltivec")
|
||
|
- set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -maltivec")
|
||
|
- endif(HAS_ALTIVEC)
|
||
|
endif(CMAKE_SYSTEM_PROCESSOR MATCHES "^(powerpc|ppc)64")
|
||
|
|
||
|
if(CMAKE_SYSTEM_PROCESSOR MATCHES "aarch64|AARCH64")
|
||
|
@@ -490,7 +484,7 @@ if(HAVE_SCHED_GETCPU)
|
||
|
add_definitions(-DROCKSDB_SCHED_GETCPU_PRESENT)
|
||
|
endif()
|
||
|
|
||
|
-check_cxx_symbol_exists(getauxval auvx.h HAVE_AUXV_GETAUXVAL)
|
||
|
+check_cxx_symbol_exists(getauxval sys/auxv.h HAVE_AUXV_GETAUXVAL)
|
||
|
if(HAVE_AUXV_GETAUXVAL)
|
||
|
add_definitions(-DROCKSDB_AUXV_GETAUXVAL_PRESENT)
|
||
|
endif()
|
||
|
@@ -761,11 +755,14 @@ if(HAVE_SSE42 AND NOT MSVC)
|
||
|
PROPERTIES COMPILE_FLAGS "-msse4.2 -mpclmul")
|
||
|
endif()
|
||
|
|
||
|
-if(CMAKE_SYSTEM_PROCESSOR MATCHES "^(powerpc|ppc)64")
|
||
|
+if(HAS_POWER8)
|
||
|
list(APPEND SOURCES
|
||
|
+ util/crc32c_ppc.c)
|
||
|
+ set_source_files_properties(
|
||
|
util/crc32c_ppc.c
|
||
|
- util/crc32c_ppc_asm.S)
|
||
|
-endif(CMAKE_SYSTEM_PROCESSOR MATCHES "^(powerpc|ppc)64")
|
||
|
+ PROPERTIES COMPILE_FLAGS "-maltivec"
|
||
|
+ COMPILE_DEFINITIONS "CRC32_FUNCTION=crc32c_ppc;CRC32_CONSTANTS_HEADER=\"crc32c_ppc_constants.h\"")
|
||
|
+endif(HAS_POWER8)
|
||
|
|
||
|
if(HAS_ARMV8_CRC)
|
||
|
list(APPEND SOURCES
|
||
|
diff --git a/Makefile b/Makefile
|
||
|
index a258819f82..0249ce84bc 100644
|
||
|
--- a/Makefile
|
||
|
+++ b/Makefile
|
||
|
@@ -132,16 +132,9 @@ OPT += -momit-leaf-frame-pointer
|
||
|
endif
|
||
|
endif
|
||
|
|
||
|
-ifeq (,$(shell $(CXX) -fsyntax-only -maltivec -xc /dev/null 2>&1))
|
||
|
-CXXFLAGS += -DHAS_ALTIVEC
|
||
|
-CFLAGS += -DHAS_ALTIVEC
|
||
|
-HAS_ALTIVEC=1
|
||
|
-endif
|
||
|
-
|
||
|
ifeq (,$(shell $(CXX) -fsyntax-only -mcpu=power8 -xc /dev/null 2>&1))
|
||
|
-CXXFLAGS += -DHAVE_POWER8
|
||
|
-CFLAGS += -DHAVE_POWER8
|
||
|
HAVE_POWER8=1
|
||
|
+POWER8_CFLAGS=-maltivec -DCRC32_CONSTANTS_HEADER='"crc32c_ppc_constants.h"' -DCRC32_FUNCTION=crc32c_ppc
|
||
|
endif
|
||
|
|
||
|
ifeq (,$(shell $(CXX) -fsyntax-only -march=armv8-a+crc+crypto -xc /dev/null 2>&1))
|
||
|
@@ -418,7 +411,6 @@ LIBOBJECTS = $(LIB_SOURCES:.cc=.o)
|
||
|
ifeq ($(HAVE_POWER8),1)
|
||
|
LIB_CC_OBJECTS = $(LIB_SOURCES:.cc=.o)
|
||
|
LIBOBJECTS += $(LIB_SOURCES_C:.c=.o)
|
||
|
-LIBOBJECTS += $(LIB_SOURCES_ASM:.S=.o)
|
||
|
else
|
||
|
LIB_CC_OBJECTS = $(LIB_SOURCES:.cc=.o)
|
||
|
endif
|
||
|
@@ -730,9 +722,7 @@ $(SHARED3): $(SHARED4)
|
||
|
endif
|
||
|
ifeq ($(HAVE_POWER8),1)
|
||
|
SHARED_C_OBJECTS = $(LIB_SOURCES_C:.c=.o)
|
||
|
-SHARED_ASM_OBJECTS = $(LIB_SOURCES_ASM:.S=.o)
|
||
|
SHARED_C_LIBOBJECTS = $(patsubst %.o,shared-objects/%.o,$(SHARED_C_OBJECTS))
|
||
|
-SHARED_ASM_LIBOBJECTS = $(patsubst %.o,shared-objects/%.o,$(SHARED_ASM_OBJECTS))
|
||
|
shared_libobjects = $(patsubst %,shared-objects/%,$(LIB_CC_OBJECTS))
|
||
|
else
|
||
|
shared_libobjects = $(patsubst %,shared-objects/%,$(LIBOBJECTS))
|
||
|
@@ -742,13 +732,10 @@ CLEAN_FILES += shared-objects
|
||
|
shared_all_libobjects = $(shared_libobjects)
|
||
|
|
||
|
ifeq ($(HAVE_POWER8),1)
|
||
|
-shared-ppc-objects = $(SHARED_C_LIBOBJECTS) $(SHARED_ASM_LIBOBJECTS)
|
||
|
+shared-ppc-objects = $(SHARED_C_LIBOBJECTS)
|
||
|
|
||
|
shared-objects/util/crc32c_ppc.o: util/crc32c_ppc.c
|
||
|
- $(AM_V_CC)$(CC) $(CFLAGS) -c $< -o $@
|
||
|
-
|
||
|
-shared-objects/util/crc32c_ppc_asm.o: util/crc32c_ppc_asm.S
|
||
|
- $(AM_V_CC)$(CC) $(CFLAGS) -c $< -o $@
|
||
|
+ $(AM_V_CC)$(CC) $(CFLAGS) $(POWER8_CFLAGS) -c $< -o $@
|
||
|
endif
|
||
|
$(shared_libobjects): shared-objects/%.o: %.cc
|
||
|
$(AM_V_CC)mkdir -p $(@D) && $(CXX) $(CXXFLAGS) $(PLATFORM_SHARED_CFLAGS) -c $< -o $@
|
||
|
@@ -1981,15 +1968,11 @@ JAVA_STATIC_INCLUDES = -I./zlib-$(ZLIB_VER) -I./bzip2-$(BZIP2_VER) -I./snappy-$(
|
||
|
|
||
|
ifeq ($(HAVE_POWER8),1)
|
||
|
JAVA_STATIC_C_LIBOBJECTS = $(patsubst %.c.o,jls/%.c.o,$(LIB_SOURCES_C:.c=.o))
|
||
|
-JAVA_STATIC_ASM_LIBOBJECTS = $(patsubst %.S.o,jls/%.S.o,$(LIB_SOURCES_ASM:.S=.o))
|
||
|
|
||
|
-java_static_ppc_libobjects = $(JAVA_STATIC_C_LIBOBJECTS) $(JAVA_STATIC_ASM_LIBOBJECTS)
|
||
|
+java_static_ppc_libobjects = $(JAVA_STATIC_C_LIBOBJECTS)
|
||
|
|
||
|
jls/util/crc32c_ppc.o: util/crc32c_ppc.c
|
||
|
- $(AM_V_CC)$(CC) $(CFLAGS) $(JAVA_STATIC_FLAGS) $(JAVA_STATIC_INCLUDES) -c $< -o $@
|
||
|
-
|
||
|
-jls/util/crc32c_ppc_asm.o: util/crc32c_ppc_asm.S
|
||
|
- $(AM_V_CC)$(CC) $(CFLAGS) $(JAVA_STATIC_FLAGS) $(JAVA_STATIC_INCLUDES) -c $< -o $@
|
||
|
+ $(AM_V_CC)$(CC) $(CFLAGS) $(POWER8_CFLAGS) $(JAVA_STATIC_FLAGS) $(JAVA_STATIC_INCLUDES) -c $< -o $@
|
||
|
|
||
|
java_static_all_libobjects += $(java_static_ppc_libobjects)
|
||
|
endif
|
||
|
@@ -2075,10 +2058,8 @@ rocksdbjavastaticpublishcentral:
|
||
|
ifeq ($(HAVE_POWER8),1)
|
||
|
JAVA_CC_OBJECTS = $(SHARED_CC_OBJECTS)
|
||
|
JAVA_C_OBJECTS = $(SHARED_C_OBJECTS)
|
||
|
-JAVA_ASM_OBJECTS = $(SHARED_ASM_OBJECTS)
|
||
|
|
||
|
JAVA_C_LIBOBJECTS = $(patsubst %.c.o,jl/%.c.o,$(JAVA_C_OBJECTS))
|
||
|
-JAVA_ASM_LIBOBJECTS = $(patsubst %.S.o,jl/%.S.o,$(JAVA_ASM_OBJECTS))
|
||
|
endif
|
||
|
|
||
|
java_libobjects = $(patsubst %,jl/%,$(LIB_CC_OBJECTS))
|
||
|
@@ -2086,13 +2067,11 @@ CLEAN_FILES += jl
|
||
|
java_all_libobjects = $(java_libobjects)
|
||
|
|
||
|
ifeq ($(HAVE_POWER8),1)
|
||
|
-java_ppc_libobjects = $(JAVA_C_LIBOBJECTS) $(JAVA_ASM_LIBOBJECTS)
|
||
|
+java_ppc_libobjects = $(JAVA_C_LIBOBJECTS)
|
||
|
|
||
|
jl/crc32c_ppc.o: util/crc32c_ppc.c
|
||
|
- $(AM_V_CC)$(CC) $(CFLAGS) -c $< -o $@
|
||
|
+ $(AM_V_CC)$(CC) $(CFLAGS) $(POWER8_CFLAGS) -c $< -o $@
|
||
|
|
||
|
-jl/crc32c_ppc_asm.o: util/crc32c_ppc_asm.S
|
||
|
- $(AM_V_CC)$(CC) $(CFLAGS) -c $< -o $@
|
||
|
java_all_libobjects += $(java_ppc_libobjects)
|
||
|
endif
|
||
|
|
||
|
@@ -2160,10 +2139,7 @@ IOSVERSION=$(shell defaults read $(PLATFORMSROOT)/iPhoneOS.platform/version CFBu
|
||
|
else
|
||
|
ifeq ($(HAVE_POWER8),1)
|
||
|
util/crc32c_ppc.o: util/crc32c_ppc.c
|
||
|
- $(AM_V_CC)$(CC) $(CFLAGS) -c $< -o $@
|
||
|
-
|
||
|
-util/crc32c_ppc_asm.o: util/crc32c_ppc_asm.S
|
||
|
- $(AM_V_CC)$(CC) $(CFLAGS) -c $< -o $@
|
||
|
+ $(AM_V_CC)$(CC) $(CFLAGS) $(POWER8_CFLAGS) -c $< -o $@
|
||
|
endif
|
||
|
.cc.o:
|
||
|
$(AM_V_CC)$(CXX) $(CXXFLAGS) -c $< -o $@ $(COVERAGEFLAGS)
|
||
|
@@ -2200,7 +2176,6 @@ endif
|
||
|
|
||
|
ifeq ($(HAVE_POWER8),1)
|
||
|
DEPFILES_C = $(LIB_SOURCES_C:.c=.c.d)
|
||
|
-DEPFILES_ASM = $(LIB_SOURCES_ASM:.S=.S.d)
|
||
|
|
||
|
%.c.d: %.c
|
||
|
@$(CXX) $(CXXFLAGS) $(PLATFORM_SHARED_CFLAGS) \
|
||
|
@@ -2212,8 +2187,7 @@ DEPFILES_ASM = $(LIB_SOURCES_ASM:.S=.S.d)
|
||
|
|
||
|
$(DEPFILES_C): %.c.d
|
||
|
|
||
|
-$(DEPFILES_ASM): %.S.d
|
||
|
-depend: $(DEPFILES) $(DEPFILES_C) $(DEPFILES_ASM)
|
||
|
+depend: $(DEPFILES) $(DEPFILES_C)
|
||
|
else
|
||
|
depend: $(DEPFILES)
|
||
|
endif
|
||
|
diff --git a/util/crc32c.cc b/util/crc32c.cc
|
||
|
index fa70d23ff5..ce16cb777e 100644
|
||
|
--- a/util/crc32c.cc
|
||
|
+++ b/util/crc32c.cc
|
||
|
@@ -20,15 +20,12 @@
|
||
|
|
||
|
#include "util/crc32c_arm64.h"
|
||
|
|
||
|
-#ifdef __powerpc64__
|
||
|
-#include "util/crc32c_ppc.h"
|
||
|
-#include "util/crc32c_ppc_constants.h"
|
||
|
-
|
||
|
-#if __linux__
|
||
|
#ifdef ROCKSDB_AUXV_GETAUXVAL_PRESENT
|
||
|
#include <sys/auxv.h>
|
||
|
#endif
|
||
|
|
||
|
+#ifdef __powerpc64__
|
||
|
+#include "util/crc32c_ppc.h"
|
||
|
#ifndef PPC_FEATURE2_VEC_CRYPTO
|
||
|
#define PPC_FEATURE2_VEC_CRYPTO 0x02000000
|
||
|
#endif
|
||
|
@@ -37,19 +34,11 @@
|
||
|
#define AT_HWCAP2 26
|
||
|
#endif
|
||
|
|
||
|
-#endif /* __linux__ */
|
||
|
-
|
||
|
#endif
|
||
|
|
||
|
namespace ROCKSDB_NAMESPACE {
|
||
|
namespace crc32c {
|
||
|
|
||
|
-#if defined(HAVE_POWER8) && defined(HAS_ALTIVEC)
|
||
|
-#ifdef __powerpc64__
|
||
|
-static int arch_ppc_crc32 = 0;
|
||
|
-#endif /* __powerpc64__ */
|
||
|
-#endif
|
||
|
-
|
||
|
static const uint32_t table0_[256] = {
|
||
|
0x00000000, 0xf26b8303, 0xe13b70f7, 0x1350f3f4,
|
||
|
0xc79a971f, 0x35f1141c, 0x26a1e7e8, 0xd4ca64eb,
|
||
|
@@ -342,6 +331,7 @@ static inline void Slow_CRC32(uint64_t* l, uint8_t const **p) {
|
||
|
table0_[c >> 24];
|
||
|
}
|
||
|
|
||
|
+#ifndef _ARCH_PWR8
|
||
|
static inline void Fast_CRC32(uint64_t* l, uint8_t const **p) {
|
||
|
#ifndef HAVE_SSE42
|
||
|
Slow_CRC32(l, p);
|
||
|
@@ -355,6 +345,7 @@ static inline void Fast_CRC32(uint64_t* l, uint8_t const **p) {
|
||
|
*p += 4;
|
||
|
#endif
|
||
|
}
|
||
|
+#endif
|
||
|
|
||
|
template<void (*CRC32)(uint64_t*, uint8_t const**)>
|
||
|
uint32_t ExtendImpl(uint32_t crc, const char* buf, size_t size) {
|
||
|
@@ -403,7 +394,7 @@ uint32_t ExtendImpl(uint32_t crc, const char* buf, size_t size) {
|
||
|
// Detect if ARM64 CRC or not.
|
||
|
#ifndef HAVE_ARM64_CRC
|
||
|
// Detect if SS42 or not.
|
||
|
-#ifndef HAVE_POWER8
|
||
|
+#ifndef _ARCH_PWR8
|
||
|
|
||
|
static bool isSSE42() {
|
||
|
#ifndef HAVE_SSE42
|
||
|
@@ -439,36 +430,23 @@ static bool isPCLMULQDQ() {
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
-#endif // HAVE_POWER8
|
||
|
+#endif // _ARCH_PWR8
|
||
|
#endif // HAVE_ARM64_CRC
|
||
|
|
||
|
typedef uint32_t (*Function)(uint32_t, const char*, size_t);
|
||
|
|
||
|
-#if defined(HAVE_POWER8) && defined(HAS_ALTIVEC)
|
||
|
+#if defined(__powerpc64__)
|
||
|
uint32_t ExtendPPCImpl(uint32_t crc, const char *buf, size_t size) {
|
||
|
return crc32c_ppc(crc, (const unsigned char *)buf, size);
|
||
|
}
|
||
|
|
||
|
-#if __linux__
|
||
|
-static int arch_ppc_probe(void) {
|
||
|
- arch_ppc_crc32 = 0;
|
||
|
-
|
||
|
-#if defined(__powerpc64__) && defined(ROCKSDB_AUXV_GETAUXVAL_PRESENT)
|
||
|
- if (getauxval(AT_HWCAP2) & PPC_FEATURE2_VEC_CRYPTO) arch_ppc_crc32 = 1;
|
||
|
-#endif /* __powerpc64__ */
|
||
|
-
|
||
|
- return arch_ppc_crc32;
|
||
|
-}
|
||
|
-#endif // __linux__
|
||
|
-
|
||
|
static bool isAltiVec() {
|
||
|
- if (arch_ppc_probe()) {
|
||
|
- return true;
|
||
|
- } else {
|
||
|
- return false;
|
||
|
- }
|
||
|
-}
|
||
|
+#if defined(__linux__) && defined(ROCKSDB_AUXV_GETAUXVAL_PRESENT)
|
||
|
+ if (getauxval(AT_HWCAP2) & PPC_FEATURE2_VEC_CRYPTO) return true;
|
||
|
#endif
|
||
|
+ return false;
|
||
|
+}
|
||
|
+#endif // __power64__
|
||
|
|
||
|
#if defined(__linux__) && defined(HAVE_ARM64_CRC)
|
||
|
uint32_t ExtendARMImpl(uint32_t crc, const char *buf, size_t size) {
|
||
|
@@ -480,16 +458,9 @@ std::string IsFastCrc32Supported() {
|
||
|
bool has_fast_crc = false;
|
||
|
std::string fast_zero_msg;
|
||
|
std::string arch;
|
||
|
-#ifdef HAVE_POWER8
|
||
|
-#ifdef HAS_ALTIVEC
|
||
|
- if (arch_ppc_probe()) {
|
||
|
- has_fast_crc = true;
|
||
|
- arch = "PPC";
|
||
|
- }
|
||
|
-#else
|
||
|
- has_fast_crc = false;
|
||
|
+#ifdef __powerpc64__
|
||
|
+ has_fast_crc = isAltiVec();
|
||
|
arch = "PPC";
|
||
|
-#endif
|
||
|
#elif defined(__linux__) && defined(HAVE_ARM64_CRC)
|
||
|
if (crc32c_runtime_check()) {
|
||
|
has_fast_crc = true;
|
||
|
@@ -1220,7 +1191,7 @@ uint32_t crc32c_3way(uint32_t crc, const char* buf, size_t len) {
|
||
|
#endif //HAVE_SSE42 && HAVE_PCLMUL
|
||
|
|
||
|
static inline Function Choose_Extend() {
|
||
|
-#ifdef HAVE_POWER8
|
||
|
+#ifdef __powerpc64__
|
||
|
return isAltiVec() ? ExtendPPCImpl : ExtendImpl<Slow_CRC32>;
|
||
|
#elif defined(__linux__) && defined(HAVE_ARM64_CRC)
|
||
|
if(crc32c_runtime_check()) {
|
||
|
diff --git a/util/crc32c_ppc.c b/util/crc32c_ppc.c
|
||
|
index 888a4943ea..a8914e8fbd 100644
|
||
|
--- a/util/crc32c_ppc.c
|
||
|
+++ b/util/crc32c_ppc.c
|
||
|
@@ -4,91 +4,648 @@
|
||
|
// This source code is licensed under both the GPLv2 (found in the
|
||
|
// COPYING file in the root directory) and Apache 2.0 License
|
||
|
// (found in the LICENSE.Apache file in the root directory).
|
||
|
+// From: https://github.com/antonblanchard/crc32-vpmsum/blob/master/vec_crc32.c
|
||
|
|
||
|
+#include <altivec.h>
|
||
|
+
|
||
|
+#define POWER8_INTRINSICS
|
||
|
#define CRC_TABLE
|
||
|
-#include <stdint.h>
|
||
|
-#include <stdlib.h>
|
||
|
-#include <strings.h>
|
||
|
-#include "util/crc32c_ppc_constants.h"
|
||
|
|
||
|
-#define VMX_ALIGN 16
|
||
|
-#define VMX_ALIGN_MASK (VMX_ALIGN - 1)
|
||
|
+#ifdef CRC32_CONSTANTS_HEADER
|
||
|
+#include CRC32_CONSTANTS_HEADER
|
||
|
+#else
|
||
|
+#include "crc32_constants.h"
|
||
|
+#endif
|
||
|
+
|
||
|
+#define VMX_ALIGN 16
|
||
|
+#define VMX_ALIGN_MASK (VMX_ALIGN-1)
|
||
|
|
||
|
#ifdef REFLECT
|
||
|
-static unsigned int crc32_align(unsigned int crc, unsigned char const *p,
|
||
|
- unsigned long len) {
|
||
|
- while (len--) crc = crc_table[(crc ^ *p++) & 0xff] ^ (crc >> 8);
|
||
|
- return crc;
|
||
|
+static unsigned int crc32_align(unsigned int crc, const unsigned char *p,
|
||
|
+ unsigned long len)
|
||
|
+{
|
||
|
+ while (len--)
|
||
|
+ crc = crc_table[(crc ^ *p++) & 0xff] ^ (crc >> 8);
|
||
|
+ return crc;
|
||
|
+}
|
||
|
+#else
|
||
|
+static unsigned int crc32_align(unsigned int crc, const unsigned char *p,
|
||
|
+ unsigned long len)
|
||
|
+{
|
||
|
+ while (len--)
|
||
|
+ crc = crc_table[((crc >> 24) ^ *p++) & 0xff] ^ (crc << 8);
|
||
|
+ return crc;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
-#ifdef HAVE_POWER8
|
||
|
-unsigned int __crc32_vpmsum(unsigned int crc, unsigned char const *p,
|
||
|
- unsigned long len);
|
||
|
+static unsigned int __attribute__ ((aligned (32)))
|
||
|
+__crc32_vpmsum(unsigned int crc, const void* p, unsigned long len);
|
||
|
|
||
|
-static uint32_t crc32_vpmsum(uint32_t crc, unsigned char const *data,
|
||
|
- unsigned len) {
|
||
|
- unsigned int prealign;
|
||
|
- unsigned int tail;
|
||
|
+#ifndef CRC32_FUNCTION
|
||
|
+#define CRC32_FUNCTION crc32_vpmsum
|
||
|
+#endif
|
||
|
+
|
||
|
+unsigned int CRC32_FUNCTION(unsigned int crc, const unsigned char *p,
|
||
|
+ unsigned long len)
|
||
|
+{
|
||
|
+ unsigned int prealign;
|
||
|
+ unsigned int tail;
|
||
|
|
||
|
#ifdef CRC_XOR
|
||
|
- crc ^= 0xffffffff;
|
||
|
+ crc ^= 0xffffffff;
|
||
|
#endif
|
||
|
|
||
|
- if (len < VMX_ALIGN + VMX_ALIGN_MASK) {
|
||
|
- crc = crc32_align(crc, data, (unsigned long)len);
|
||
|
- goto out;
|
||
|
- }
|
||
|
+ if (len < VMX_ALIGN + VMX_ALIGN_MASK) {
|
||
|
+ crc = crc32_align(crc, p, len);
|
||
|
+ goto out;
|
||
|
+ }
|
||
|
|
||
|
- if ((unsigned long)data & VMX_ALIGN_MASK) {
|
||
|
- prealign = VMX_ALIGN - ((unsigned long)data & VMX_ALIGN_MASK);
|
||
|
- crc = crc32_align(crc, data, prealign);
|
||
|
- len -= prealign;
|
||
|
- data += prealign;
|
||
|
- }
|
||
|
+ if ((unsigned long)p & VMX_ALIGN_MASK) {
|
||
|
+ prealign = VMX_ALIGN - ((unsigned long)p & VMX_ALIGN_MASK);
|
||
|
+ crc = crc32_align(crc, p, prealign);
|
||
|
+ len -= prealign;
|
||
|
+ p += prealign;
|
||
|
+ }
|
||
|
|
||
|
- crc = __crc32_vpmsum(crc, data, (unsigned long)len & ~VMX_ALIGN_MASK);
|
||
|
+ crc = __crc32_vpmsum(crc, p, len & ~VMX_ALIGN_MASK);
|
||
|
|
||
|
- tail = len & VMX_ALIGN_MASK;
|
||
|
- if (tail) {
|
||
|
- data += len & ~VMX_ALIGN_MASK;
|
||
|
- crc = crc32_align(crc, data, tail);
|
||
|
- }
|
||
|
+ tail = len & VMX_ALIGN_MASK;
|
||
|
+ if (tail) {
|
||
|
+ p += len & ~VMX_ALIGN_MASK;
|
||
|
+ crc = crc32_align(crc, p, tail);
|
||
|
+ }
|
||
|
|
||
|
out:
|
||
|
#ifdef CRC_XOR
|
||
|
- crc ^= 0xffffffff;
|
||
|
+ crc ^= 0xffffffff;
|
||
|
#endif
|
||
|
|
||
|
- return crc;
|
||
|
+ return crc;
|
||
|
}
|
||
|
|
||
|
-/* This wrapper function works around the fact that crc32_vpmsum
|
||
|
- * does not gracefully handle the case where the data pointer is NULL. There
|
||
|
- * may be room for performance improvement here.
|
||
|
+#if defined (__clang__)
|
||
|
+#include "crc32c_ppc_clang_workaround.h"
|
||
|
+#else
|
||
|
+#define __builtin_pack_vector(a, b) __builtin_pack_vector_int128 ((a), (b))
|
||
|
+#define __builtin_unpack_vector_0(a) __builtin_unpack_vector_int128 ((vector __int128_t)(a), 0)
|
||
|
+#define __builtin_unpack_vector_1(a) __builtin_unpack_vector_int128 ((vector __int128_t)(a), 1)
|
||
|
+#endif
|
||
|
+
|
||
|
+/* When we have a load-store in a single-dispatch group and address overlap
|
||
|
+ * such that foward is not allowed (load-hit-store) the group must be flushed.
|
||
|
+ * A group ending NOP prevents the flush.
|
||
|
*/
|
||
|
-uint32_t crc32c_ppc(uint32_t crc, unsigned char const *data, unsigned len) {
|
||
|
- unsigned char *buf2;
|
||
|
-
|
||
|
- if (!data) {
|
||
|
- buf2 = (unsigned char *)malloc(len);
|
||
|
- bzero(buf2, len);
|
||
|
- crc = crc32_vpmsum(crc, buf2, len);
|
||
|
- free(buf2);
|
||
|
- } else {
|
||
|
- crc = crc32_vpmsum(crc, data, (unsigned long)len);
|
||
|
- }
|
||
|
- return crc;
|
||
|
-}
|
||
|
+#define GROUP_ENDING_NOP asm("ori 2,2,0" ::: "memory")
|
||
|
|
||
|
-#else /* HAVE_POWER8 */
|
||
|
+#if defined(__BIG_ENDIAN__) && defined (REFLECT)
|
||
|
+#define BYTESWAP_DATA
|
||
|
+#elif defined(__LITTLE_ENDIAN__) && !defined(REFLECT)
|
||
|
+#define BYTESWAP_DATA
|
||
|
+#endif
|
||
|
|
||
|
-/* This symbol has to exist on non-ppc architectures (and on legacy
|
||
|
- * ppc systems using power7 or below) in order to compile properly
|
||
|
- * there, even though it won't be called.
|
||
|
- */
|
||
|
-uint32_t crc32c_ppc(uint32_t crc, unsigned char const *data, unsigned len) {
|
||
|
- return 0;
|
||
|
-}
|
||
|
+#ifdef BYTESWAP_DATA
|
||
|
+#define VEC_PERM(vr, va, vb, vc) vr = vec_perm(va, vb,\
|
||
|
+ (__vector unsigned char) vc)
|
||
|
+#if defined(__LITTLE_ENDIAN__)
|
||
|
+/* Byte reverse permute constant LE. */
|
||
|
+static const __vector unsigned long long vperm_const
|
||
|
+ __attribute__ ((aligned(16))) = { 0x08090A0B0C0D0E0FUL,
|
||
|
+ 0x0001020304050607UL };
|
||
|
+#else
|
||
|
+static const __vector unsigned long long vperm_const
|
||
|
+ __attribute__ ((aligned(16))) = { 0x0F0E0D0C0B0A0908UL,
|
||
|
+ 0X0706050403020100UL };
|
||
|
+#endif
|
||
|
+#else
|
||
|
+#define VEC_PERM(vr, va, vb, vc)
|
||
|
+#endif
|
||
|
+
|
||
|
+static unsigned int __attribute__ ((aligned (32)))
|
||
|
+__crc32_vpmsum(unsigned int crc, const void* p, unsigned long len) {
|
||
|
+
|
||
|
+ const __vector unsigned long long vzero = {0,0};
|
||
|
+ const __vector unsigned long long vones = {0xffffffffffffffffUL,
|
||
|
+ 0xffffffffffffffffUL};
|
||
|
+
|
||
|
+#ifdef REFLECT
|
||
|
+ const __vector unsigned long long vmask_32bit =
|
||
|
+ (__vector unsigned long long)vec_sld((__vector unsigned char)vzero,
|
||
|
+ (__vector unsigned char)vones, 4);
|
||
|
+#endif
|
||
|
+
|
||
|
+ const __vector unsigned long long vmask_64bit =
|
||
|
+ (__vector unsigned long long)vec_sld((__vector unsigned char)vzero,
|
||
|
+ (__vector unsigned char)vones, 8);
|
||
|
+
|
||
|
+ __vector unsigned long long vcrc;
|
||
|
+
|
||
|
+ __vector unsigned long long vconst1, vconst2;
|
||
|
+
|
||
|
+ /* vdata0-vdata7 will contain our data (p). */
|
||
|
+ __vector unsigned long long vdata0, vdata1, vdata2, vdata3, vdata4,
|
||
|
+ vdata5, vdata6, vdata7;
|
||
|
+
|
||
|
+ /* v0-v7 will contain our checksums */
|
||
|
+ __vector unsigned long long v0 = {0,0};
|
||
|
+ __vector unsigned long long v1 = {0,0};
|
||
|
+ __vector unsigned long long v2 = {0,0};
|
||
|
+ __vector unsigned long long v3 = {0,0};
|
||
|
+ __vector unsigned long long v4 = {0,0};
|
||
|
+ __vector unsigned long long v5 = {0,0};
|
||
|
+ __vector unsigned long long v6 = {0,0};
|
||
|
+ __vector unsigned long long v7 = {0,0};
|
||
|
+
|
||
|
+
|
||
|
+ /* Vector auxiliary variables. */
|
||
|
+ __vector unsigned long long va0, va1, va2, va3, va4, va5, va6, va7;
|
||
|
+
|
||
|
+ unsigned int result = 0;
|
||
|
+ unsigned int offset; /* Constant table offset. */
|
||
|
+
|
||
|
+ unsigned long i; /* Counter. */
|
||
|
+ unsigned long chunks;
|
||
|
+
|
||
|
+ unsigned long block_size;
|
||
|
+ int next_block = 0;
|
||
|
+
|
||
|
+ /* Align by 128 bits. The last 128 bit block will be processed at end. */
|
||
|
+ unsigned long length = len & 0xFFFFFFFFFFFFFF80UL;
|
||
|
+
|
||
|
+#ifdef REFLECT
|
||
|
+ vcrc = (__vector unsigned long long)__builtin_pack_vector(0UL, crc);
|
||
|
+#else
|
||
|
+ vcrc = (__vector unsigned long long)__builtin_pack_vector(crc, 0UL);
|
||
|
+
|
||
|
+ /* Shift into top 32 bits */
|
||
|
+ vcrc = (__vector unsigned long long)vec_sld((__vector unsigned char)vcrc,
|
||
|
+ (__vector unsigned char)vzero, 4);
|
||
|
+#endif
|
||
|
+
|
||
|
+ /* Short version. */
|
||
|
+ if (len < 256) {
|
||
|
+ /* Calculate where in the constant table we need to start. */
|
||
|
+ offset = 256 - len;
|
||
|
+
|
||
|
+ vconst1 = vec_ld(offset, vcrc_short_const);
|
||
|
+ vdata0 = vec_ld(0, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(vdata0, vdata0, vconst1, vperm_const);
|
||
|
+
|
||
|
+ /* xor initial value*/
|
||
|
+ vdata0 = vec_xor(vdata0, vcrc);
|
||
|
+
|
||
|
+ vdata0 = (__vector unsigned long long) __builtin_crypto_vpmsumw
|
||
|
+ ((__vector unsigned int)vdata0, (__vector unsigned int)vconst1);
|
||
|
+ v0 = vec_xor(v0, vdata0);
|
||
|
+
|
||
|
+ for (i = 16; i < len; i += 16) {
|
||
|
+ vconst1 = vec_ld(offset + i, vcrc_short_const);
|
||
|
+ vdata0 = vec_ld(i, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(vdata0, vdata0, vconst1, vperm_const);
|
||
|
+ vdata0 = (__vector unsigned long long) __builtin_crypto_vpmsumw
|
||
|
+ ((__vector unsigned int)vdata0, (__vector unsigned int)vconst1);
|
||
|
+ v0 = vec_xor(v0, vdata0);
|
||
|
+ }
|
||
|
+ } else {
|
||
|
+
|
||
|
+ /* Load initial values. */
|
||
|
+ vdata0 = vec_ld(0, (__vector unsigned long long*) p);
|
||
|
+ vdata1 = vec_ld(16, (__vector unsigned long long*) p);
|
||
|
+
|
||
|
+ VEC_PERM(vdata0, vdata0, vdata0, vperm_const);
|
||
|
+ VEC_PERM(vdata1, vdata1, vdata1, vperm_const);
|
||
|
+
|
||
|
+ vdata2 = vec_ld(32, (__vector unsigned long long*) p);
|
||
|
+ vdata3 = vec_ld(48, (__vector unsigned long long*) p);
|
||
|
+
|
||
|
+ VEC_PERM(vdata2, vdata2, vdata2, vperm_const);
|
||
|
+ VEC_PERM(vdata3, vdata3, vdata3, vperm_const);
|
||
|
+
|
||
|
+ vdata4 = vec_ld(64, (__vector unsigned long long*) p);
|
||
|
+ vdata5 = vec_ld(80, (__vector unsigned long long*) p);
|
||
|
+
|
||
|
+ VEC_PERM(vdata4, vdata4, vdata4, vperm_const);
|
||
|
+ VEC_PERM(vdata5, vdata5, vdata5, vperm_const);
|
||
|
+
|
||
|
+ vdata6 = vec_ld(96, (__vector unsigned long long*) p);
|
||
|
+ vdata7 = vec_ld(112, (__vector unsigned long long*) p);
|
||
|
+
|
||
|
+ VEC_PERM(vdata6, vdata6, vdata6, vperm_const);
|
||
|
+ VEC_PERM(vdata7, vdata7, vdata7, vperm_const);
|
||
|
+
|
||
|
+ /* xor in initial value */
|
||
|
+ vdata0 = vec_xor(vdata0, vcrc);
|
||
|
+
|
||
|
+ p = (char *)p + 128;
|
||
|
+
|
||
|
+ do {
|
||
|
+ /* Checksum in blocks of MAX_SIZE. */
|
||
|
+ block_size = length;
|
||
|
+ if (block_size > MAX_SIZE) {
|
||
|
+ block_size = MAX_SIZE;
|
||
|
+ }
|
||
|
+
|
||
|
+ length = length - block_size;
|
||
|
+
|
||
|
+ /*
|
||
|
+ * Work out the offset into the constants table to start at. Each
|
||
|
+ * constant is 16 bytes, and it is used against 128 bytes of input
|
||
|
+ * data - 128 / 16 = 8
|
||
|
+ */
|
||
|
+ offset = (MAX_SIZE/8) - (block_size/8);
|
||
|
+ /* We reduce our final 128 bytes in a separate step */
|
||
|
+ chunks = (block_size/128)-1;
|
||
|
+
|
||
|
+ vconst1 = vec_ld(offset, vcrc_const);
|
||
|
+
|
||
|
+ va0 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata0,
|
||
|
+ (__vector unsigned long long)vconst1);
|
||
|
+ va1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata1,
|
||
|
+ (__vector unsigned long long)vconst1);
|
||
|
+ va2 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata2,
|
||
|
+ (__vector unsigned long long)vconst1);
|
||
|
+ va3 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata3,
|
||
|
+ (__vector unsigned long long)vconst1);
|
||
|
+ va4 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata4,
|
||
|
+ (__vector unsigned long long)vconst1);
|
||
|
+ va5 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata5,
|
||
|
+ (__vector unsigned long long)vconst1);
|
||
|
+ va6 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata6,
|
||
|
+ (__vector unsigned long long)vconst1);
|
||
|
+ va7 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata7,
|
||
|
+ (__vector unsigned long long)vconst1);
|
||
|
+
|
||
|
+ if (chunks > 1) {
|
||
|
+ offset += 16;
|
||
|
+ vconst2 = vec_ld(offset, vcrc_const);
|
||
|
+ GROUP_ENDING_NOP;
|
||
|
+
|
||
|
+ vdata0 = vec_ld(0, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(vdata0, vdata0, vdata0, vperm_const);
|
||
|
+
|
||
|
+ vdata1 = vec_ld(16, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(vdata1, vdata1, vdata1, vperm_const);
|
||
|
+
|
||
|
+ vdata2 = vec_ld(32, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(vdata2, vdata2, vdata2, vperm_const);
|
||
|
+
|
||
|
+ vdata3 = vec_ld(48, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(vdata3, vdata3, vdata3, vperm_const);
|
||
|
+
|
||
|
+ vdata4 = vec_ld(64, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(vdata4, vdata4, vdata4, vperm_const);
|
||
|
+
|
||
|
+ vdata5 = vec_ld(80, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(vdata5, vdata5, vdata5, vperm_const);
|
||
|
+
|
||
|
+ vdata6 = vec_ld(96, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(vdata6, vdata6, vdata6, vperm_const);
|
||
|
+
|
||
|
+ vdata7 = vec_ld(112, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(vdata7, vdata7, vdata7, vperm_const);
|
||
|
+
|
||
|
+ p = (char *)p + 128;
|
||
|
|
||
|
-#endif /* HAVE_POWER8 */
|
||
|
+ /*
|
||
|
+ * main loop. We modulo schedule it such that it takes three
|
||
|
+ * iterations to complete - first iteration load, second
|
||
|
+ * iteration vpmsum, third iteration xor.
|
||
|
+ */
|
||
|
+ for (i = 0; i < chunks-2; i++) {
|
||
|
+ vconst1 = vec_ld(offset, vcrc_const);
|
||
|
+ offset += 16;
|
||
|
+ GROUP_ENDING_NOP;
|
||
|
+
|
||
|
+ v0 = vec_xor(v0, va0);
|
||
|
+ va0 = __builtin_crypto_vpmsumd ((__vector unsigned long
|
||
|
+ long)vdata0, (__vector unsigned long long)vconst2);
|
||
|
+ vdata0 = vec_ld(0, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(vdata0, vdata0, vdata0, vperm_const);
|
||
|
+ GROUP_ENDING_NOP;
|
||
|
+
|
||
|
+ v1 = vec_xor(v1, va1);
|
||
|
+ va1 = __builtin_crypto_vpmsumd ((__vector unsigned long
|
||
|
+ long)vdata1, (__vector unsigned long long)vconst2);
|
||
|
+ vdata1 = vec_ld(16, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(vdata1, vdata1, vdata1, vperm_const);
|
||
|
+ GROUP_ENDING_NOP;
|
||
|
+
|
||
|
+ v2 = vec_xor(v2, va2);
|
||
|
+ va2 = __builtin_crypto_vpmsumd ((__vector unsigned long
|
||
|
+ long)vdata2, (__vector unsigned long long)vconst2);
|
||
|
+ vdata2 = vec_ld(32, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(vdata2, vdata2, vdata2, vperm_const);
|
||
|
+ GROUP_ENDING_NOP;
|
||
|
+
|
||
|
+ v3 = vec_xor(v3, va3);
|
||
|
+ va3 = __builtin_crypto_vpmsumd ((__vector unsigned long
|
||
|
+ long)vdata3, (__vector unsigned long long)vconst2);
|
||
|
+ vdata3 = vec_ld(48, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(vdata3, vdata3, vdata3, vperm_const);
|
||
|
+
|
||
|
+ vconst2 = vec_ld(offset, vcrc_const);
|
||
|
+ GROUP_ENDING_NOP;
|
||
|
+
|
||
|
+ v4 = vec_xor(v4, va4);
|
||
|
+ va4 = __builtin_crypto_vpmsumd ((__vector unsigned long
|
||
|
+ long)vdata4, (__vector unsigned long long)vconst1);
|
||
|
+ vdata4 = vec_ld(64, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(vdata4, vdata4, vdata4, vperm_const);
|
||
|
+ GROUP_ENDING_NOP;
|
||
|
+
|
||
|
+ v5 = vec_xor(v5, va5);
|
||
|
+ va5 = __builtin_crypto_vpmsumd ((__vector unsigned long
|
||
|
+ long)vdata5, (__vector unsigned long long)vconst1);
|
||
|
+ vdata5 = vec_ld(80, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(vdata5, vdata5, vdata5, vperm_const);
|
||
|
+ GROUP_ENDING_NOP;
|
||
|
+
|
||
|
+ v6 = vec_xor(v6, va6);
|
||
|
+ va6 = __builtin_crypto_vpmsumd ((__vector unsigned long
|
||
|
+ long)vdata6, (__vector unsigned long long)vconst1);
|
||
|
+ vdata6 = vec_ld(96, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(vdata6, vdata6, vdata6, vperm_const);
|
||
|
+ GROUP_ENDING_NOP;
|
||
|
+
|
||
|
+ v7 = vec_xor(v7, va7);
|
||
|
+ va7 = __builtin_crypto_vpmsumd ((__vector unsigned long
|
||
|
+ long)vdata7, (__vector unsigned long long)vconst1);
|
||
|
+ vdata7 = vec_ld(112, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(vdata7, vdata7, vdata7, vperm_const);
|
||
|
+
|
||
|
+ p = (char *)p + 128;
|
||
|
+ }
|
||
|
+
|
||
|
+ /* First cool down*/
|
||
|
+ vconst1 = vec_ld(offset, vcrc_const);
|
||
|
+ offset += 16;
|
||
|
+
|
||
|
+ v0 = vec_xor(v0, va0);
|
||
|
+ va0 = __builtin_crypto_vpmsumd ((__vector unsigned long
|
||
|
+ long)vdata0, (__vector unsigned long long)vconst1);
|
||
|
+ GROUP_ENDING_NOP;
|
||
|
+
|
||
|
+ v1 = vec_xor(v1, va1);
|
||
|
+ va1 = __builtin_crypto_vpmsumd ((__vector unsigned long
|
||
|
+ long)vdata1, (__vector unsigned long long)vconst1);
|
||
|
+ GROUP_ENDING_NOP;
|
||
|
+
|
||
|
+ v2 = vec_xor(v2, va2);
|
||
|
+ va2 = __builtin_crypto_vpmsumd ((__vector unsigned long
|
||
|
+ long)vdata2, (__vector unsigned long long)vconst1);
|
||
|
+ GROUP_ENDING_NOP;
|
||
|
+
|
||
|
+ v3 = vec_xor(v3, va3);
|
||
|
+ va3 = __builtin_crypto_vpmsumd ((__vector unsigned long
|
||
|
+ long)vdata3, (__vector unsigned long long)vconst1);
|
||
|
+ GROUP_ENDING_NOP;
|
||
|
+
|
||
|
+ v4 = vec_xor(v4, va4);
|
||
|
+ va4 = __builtin_crypto_vpmsumd ((__vector unsigned long
|
||
|
+ long)vdata4, (__vector unsigned long long)vconst1);
|
||
|
+ GROUP_ENDING_NOP;
|
||
|
+
|
||
|
+ v5 = vec_xor(v5, va5);
|
||
|
+ va5 = __builtin_crypto_vpmsumd ((__vector unsigned long
|
||
|
+ long)vdata5, (__vector unsigned long long)vconst1);
|
||
|
+ GROUP_ENDING_NOP;
|
||
|
+
|
||
|
+ v6 = vec_xor(v6, va6);
|
||
|
+ va6 = __builtin_crypto_vpmsumd ((__vector unsigned long
|
||
|
+ long)vdata6, (__vector unsigned long long)vconst1);
|
||
|
+ GROUP_ENDING_NOP;
|
||
|
+
|
||
|
+ v7 = vec_xor(v7, va7);
|
||
|
+ va7 = __builtin_crypto_vpmsumd ((__vector unsigned long
|
||
|
+ long)vdata7, (__vector unsigned long long)vconst1);
|
||
|
+ }/* else */
|
||
|
+
|
||
|
+ /* Second cool down. */
|
||
|
+ v0 = vec_xor(v0, va0);
|
||
|
+ v1 = vec_xor(v1, va1);
|
||
|
+ v2 = vec_xor(v2, va2);
|
||
|
+ v3 = vec_xor(v3, va3);
|
||
|
+ v4 = vec_xor(v4, va4);
|
||
|
+ v5 = vec_xor(v5, va5);
|
||
|
+ v6 = vec_xor(v6, va6);
|
||
|
+ v7 = vec_xor(v7, va7);
|
||
|
+
|
||
|
+#ifdef REFLECT
|
||
|
+ /*
|
||
|
+ * vpmsumd produces a 96 bit result in the least significant bits
|
||
|
+ * of the register. Since we are bit reflected we have to shift it
|
||
|
+ * left 32 bits so it occupies the least significant bits in the
|
||
|
+ * bit reflected domain.
|
||
|
+ */
|
||
|
+ v0 = (__vector unsigned long long)vec_sld((__vector unsigned char)v0,
|
||
|
+ (__vector unsigned char)vzero, 4);
|
||
|
+ v1 = (__vector unsigned long long)vec_sld((__vector unsigned char)v1,
|
||
|
+ (__vector unsigned char)vzero, 4);
|
||
|
+ v2 = (__vector unsigned long long)vec_sld((__vector unsigned char)v2,
|
||
|
+ (__vector unsigned char)vzero, 4);
|
||
|
+ v3 = (__vector unsigned long long)vec_sld((__vector unsigned char)v3,
|
||
|
+ (__vector unsigned char)vzero, 4);
|
||
|
+ v4 = (__vector unsigned long long)vec_sld((__vector unsigned char)v4,
|
||
|
+ (__vector unsigned char)vzero, 4);
|
||
|
+ v5 = (__vector unsigned long long)vec_sld((__vector unsigned char)v5,
|
||
|
+ (__vector unsigned char)vzero, 4);
|
||
|
+ v6 = (__vector unsigned long long)vec_sld((__vector unsigned char)v6,
|
||
|
+ (__vector unsigned char)vzero, 4);
|
||
|
+ v7 = (__vector unsigned long long)vec_sld((__vector unsigned char)v7,
|
||
|
+ (__vector unsigned char)vzero, 4);
|
||
|
+#endif
|
||
|
+
|
||
|
+ /* xor with the last 1024 bits. */
|
||
|
+ va0 = vec_ld(0, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(va0, va0, va0, vperm_const);
|
||
|
+
|
||
|
+ va1 = vec_ld(16, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(va1, va1, va1, vperm_const);
|
||
|
+
|
||
|
+ va2 = vec_ld(32, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(va2, va2, va2, vperm_const);
|
||
|
+
|
||
|
+ va3 = vec_ld(48, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(va3, va3, va3, vperm_const);
|
||
|
+
|
||
|
+ va4 = vec_ld(64, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(va4, va4, va4, vperm_const);
|
||
|
+
|
||
|
+ va5 = vec_ld(80, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(va5, va5, va5, vperm_const);
|
||
|
+
|
||
|
+ va6 = vec_ld(96, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(va6, va6, va6, vperm_const);
|
||
|
+
|
||
|
+ va7 = vec_ld(112, (__vector unsigned long long*) p);
|
||
|
+ VEC_PERM(va7, va7, va7, vperm_const);
|
||
|
+
|
||
|
+ p = (char *)p + 128;
|
||
|
+
|
||
|
+ vdata0 = vec_xor(v0, va0);
|
||
|
+ vdata1 = vec_xor(v1, va1);
|
||
|
+ vdata2 = vec_xor(v2, va2);
|
||
|
+ vdata3 = vec_xor(v3, va3);
|
||
|
+ vdata4 = vec_xor(v4, va4);
|
||
|
+ vdata5 = vec_xor(v5, va5);
|
||
|
+ vdata6 = vec_xor(v6, va6);
|
||
|
+ vdata7 = vec_xor(v7, va7);
|
||
|
+
|
||
|
+ /* Check if we have more blocks to process */
|
||
|
+ next_block = 0;
|
||
|
+ if (length != 0) {
|
||
|
+ next_block = 1;
|
||
|
+
|
||
|
+ /* zero v0-v7 */
|
||
|
+ v0 = vec_xor(v0, v0);
|
||
|
+ v1 = vec_xor(v1, v1);
|
||
|
+ v2 = vec_xor(v2, v2);
|
||
|
+ v3 = vec_xor(v3, v3);
|
||
|
+ v4 = vec_xor(v4, v4);
|
||
|
+ v5 = vec_xor(v5, v5);
|
||
|
+ v6 = vec_xor(v6, v6);
|
||
|
+ v7 = vec_xor(v7, v7);
|
||
|
+ }
|
||
|
+ length = length + 128;
|
||
|
+
|
||
|
+ } while (next_block);
|
||
|
+
|
||
|
+ /* Calculate how many bytes we have left. */
|
||
|
+ length = (len & 127);
|
||
|
+
|
||
|
+ /* Calculate where in (short) constant table we need to start. */
|
||
|
+ offset = 128 - length;
|
||
|
+
|
||
|
+ v0 = vec_ld(offset, vcrc_short_const);
|
||
|
+ v1 = vec_ld(offset + 16, vcrc_short_const);
|
||
|
+ v2 = vec_ld(offset + 32, vcrc_short_const);
|
||
|
+ v3 = vec_ld(offset + 48, vcrc_short_const);
|
||
|
+ v4 = vec_ld(offset + 64, vcrc_short_const);
|
||
|
+ v5 = vec_ld(offset + 80, vcrc_short_const);
|
||
|
+ v6 = vec_ld(offset + 96, vcrc_short_const);
|
||
|
+ v7 = vec_ld(offset + 112, vcrc_short_const);
|
||
|
+
|
||
|
+ offset += 128;
|
||
|
+
|
||
|
+ v0 = (__vector unsigned long long)__builtin_crypto_vpmsumw (
|
||
|
+ (__vector unsigned int)vdata0,(__vector unsigned int)v0);
|
||
|
+ v1 = (__vector unsigned long long)__builtin_crypto_vpmsumw (
|
||
|
+ (__vector unsigned int)vdata1,(__vector unsigned int)v1);
|
||
|
+ v2 = (__vector unsigned long long)__builtin_crypto_vpmsumw (
|
||
|
+ (__vector unsigned int)vdata2,(__vector unsigned int)v2);
|
||
|
+ v3 = (__vector unsigned long long)__builtin_crypto_vpmsumw (
|
||
|
+ (__vector unsigned int)vdata3,(__vector unsigned int)v3);
|
||
|
+ v4 = (__vector unsigned long long)__builtin_crypto_vpmsumw (
|
||
|
+ (__vector unsigned int)vdata4,(__vector unsigned int)v4);
|
||
|
+ v5 = (__vector unsigned long long)__builtin_crypto_vpmsumw (
|
||
|
+ (__vector unsigned int)vdata5,(__vector unsigned int)v5);
|
||
|
+ v6 = (__vector unsigned long long)__builtin_crypto_vpmsumw (
|
||
|
+ (__vector unsigned int)vdata6,(__vector unsigned int)v6);
|
||
|
+ v7 = (__vector unsigned long long)__builtin_crypto_vpmsumw (
|
||
|
+ (__vector unsigned int)vdata7,(__vector unsigned int)v7);
|
||
|
+
|
||
|
+ /* Now reduce the tail (0-112 bytes). */
|
||
|
+ for (i = 0; i < length; i+=16) {
|
||
|
+ vdata0 = vec_ld(i,(__vector unsigned long long*)p);
|
||
|
+ VEC_PERM(vdata0, vdata0, vdata0, vperm_const);
|
||
|
+ va0 = vec_ld(offset + i,vcrc_short_const);
|
||
|
+ va0 = (__vector unsigned long long)__builtin_crypto_vpmsumw (
|
||
|
+ (__vector unsigned int)vdata0,(__vector unsigned int)va0);
|
||
|
+ v0 = vec_xor(v0, va0);
|
||
|
+ }
|
||
|
+
|
||
|
+ /* xor all parallel chunks together. */
|
||
|
+ v0 = vec_xor(v0, v1);
|
||
|
+ v2 = vec_xor(v2, v3);
|
||
|
+ v4 = vec_xor(v4, v5);
|
||
|
+ v6 = vec_xor(v6, v7);
|
||
|
+
|
||
|
+ v0 = vec_xor(v0, v2);
|
||
|
+ v4 = vec_xor(v4, v6);
|
||
|
+
|
||
|
+ v0 = vec_xor(v0, v4);
|
||
|
+ }
|
||
|
+
|
||
|
+ /* Barrett Reduction */
|
||
|
+ vconst1 = vec_ld(0, v_Barrett_const);
|
||
|
+ vconst2 = vec_ld(16, v_Barrett_const);
|
||
|
+
|
||
|
+ v1 = (__vector unsigned long long)vec_sld((__vector unsigned char)v0,
|
||
|
+ (__vector unsigned char)v0, 8);
|
||
|
+ v0 = vec_xor(v1,v0);
|
||
|
+
|
||
|
+#ifdef REFLECT
|
||
|
+ /* shift left one bit */
|
||
|
+ __vector unsigned char vsht_splat = vec_splat_u8 (1);
|
||
|
+ v0 = (__vector unsigned long long)vec_sll ((__vector unsigned char)v0,
|
||
|
+ vsht_splat);
|
||
|
+#endif
|
||
|
+
|
||
|
+ v0 = vec_and(v0, vmask_64bit);
|
||
|
+
|
||
|
+#ifndef REFLECT
|
||
|
+
|
||
|
+ /*
|
||
|
+ * Now for the actual algorithm. The idea is to calculate q,
|
||
|
+ * the multiple of our polynomial that we need to subtract. By
|
||
|
+ * doing the computation 2x bits higher (ie 64 bits) and shifting the
|
||
|
+ * result back down 2x bits, we round down to the nearest multiple.
|
||
|
+ */
|
||
|
+
|
||
|
+ /* ma */
|
||
|
+ v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v0,
|
||
|
+ (__vector unsigned long long)vconst1);
|
||
|
+ /* q = floor(ma/(2^64)) */
|
||
|
+ v1 = (__vector unsigned long long)vec_sld ((__vector unsigned char)vzero,
|
||
|
+ (__vector unsigned char)v1, 8);
|
||
|
+ /* qn */
|
||
|
+ v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v1,
|
||
|
+ (__vector unsigned long long)vconst2);
|
||
|
+ /* a - qn, subtraction is xor in GF(2) */
|
||
|
+ v0 = vec_xor (v0, v1);
|
||
|
+ /*
|
||
|
+ * Get the result into r3. We need to shift it left 8 bytes:
|
||
|
+ * V0 [ 0 1 2 X ]
|
||
|
+ * V0 [ 0 X 2 3 ]
|
||
|
+ */
|
||
|
+ result = __builtin_unpack_vector_1 (v0);
|
||
|
+#else
|
||
|
+
|
||
|
+ /*
|
||
|
+ * The reflected version of Barrett reduction. Instead of bit
|
||
|
+ * reflecting our data (which is expensive to do), we bit reflect our
|
||
|
+ * constants and our algorithm, which means the intermediate data in
|
||
|
+ * our vector registers goes from 0-63 instead of 63-0. We can reflect
|
||
|
+ * the algorithm because we don't carry in mod 2 arithmetic.
|
||
|
+ */
|
||
|
+
|
||
|
+ /* bottom 32 bits of a */
|
||
|
+ v1 = vec_and(v0, vmask_32bit);
|
||
|
+
|
||
|
+ /* ma */
|
||
|
+ v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v1,
|
||
|
+ (__vector unsigned long long)vconst1);
|
||
|
+
|
||
|
+ /* bottom 32bits of ma */
|
||
|
+ v1 = vec_and(v1, vmask_32bit);
|
||
|
+ /* qn */
|
||
|
+ v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v1,
|
||
|
+ (__vector unsigned long long)vconst2);
|
||
|
+ /* a - qn, subtraction is xor in GF(2) */
|
||
|
+ v0 = vec_xor (v0, v1);
|
||
|
+
|
||
|
+ /*
|
||
|
+ * Since we are bit reflected, the result (ie the low 32 bits) is in
|
||
|
+ * the high 32 bits. We just need to shift it left 4 bytes
|
||
|
+ * V0 [ 0 1 X 3 ]
|
||
|
+ * V0 [ 0 X 2 3 ]
|
||
|
+ */
|
||
|
+
|
||
|
+ /* shift result into top 64 bits of */
|
||
|
+ v0 = (__vector unsigned long long)vec_sld((__vector unsigned char)v0,
|
||
|
+ (__vector unsigned char)vzero, 4);
|
||
|
+
|
||
|
+ result = __builtin_unpack_vector_0 (v0);
|
||
|
+#endif
|
||
|
+
|
||
|
+ return result;
|
||
|
+}
|
||
|
diff --git a/util/crc32c_ppc_asm.S b/util/crc32c_ppc_asm.S
|
||
|
deleted file mode 100644
|
||
|
index a317bf96b8..0000000000
|
||
|
--- a/util/crc32c_ppc_asm.S
|
||
|
+++ /dev/null
|
||
|
@@ -1,752 +0,0 @@
|
||
|
-// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
||
|
-// Copyright (c) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
|
||
|
-// Copyright (c) 2017 International Business Machines Corp.
|
||
|
-// All rights reserved.
|
||
|
-// This source code is licensed under both the GPLv2 (found in the
|
||
|
-// COPYING file in the root directory) and Apache 2.0 License
|
||
|
-// (found in the LICENSE.Apache file in the root directory).
|
||
|
-
|
||
|
-#include <ppc-asm.h>
|
||
|
-#include "ppc-opcode.h"
|
||
|
-
|
||
|
-#undef toc
|
||
|
-
|
||
|
-#ifndef r1
|
||
|
-#define r1 1
|
||
|
-#endif
|
||
|
-
|
||
|
-#ifndef r2
|
||
|
-#define r2 2
|
||
|
-#endif
|
||
|
-
|
||
|
- .section .rodata
|
||
|
-.balign 16
|
||
|
-
|
||
|
-.byteswap_constant:
|
||
|
- /* byte reverse permute constant */
|
||
|
- .octa 0x0F0E0D0C0B0A09080706050403020100
|
||
|
-
|
||
|
-#define __ASSEMBLY__
|
||
|
-#include "crc32c_ppc_constants.h"
|
||
|
-
|
||
|
- .text
|
||
|
-
|
||
|
-#if defined(__BIG_ENDIAN__) && defined(REFLECT)
|
||
|
-#define BYTESWAP_DATA
|
||
|
-#elif defined(__LITTLE_ENDIAN__) && !defined(REFLECT)
|
||
|
-#define BYTESWAP_DATA
|
||
|
-#else
|
||
|
-#undef BYTESWAP_DATA
|
||
|
-#endif
|
||
|
-
|
||
|
-#define off16 r25
|
||
|
-#define off32 r26
|
||
|
-#define off48 r27
|
||
|
-#define off64 r28
|
||
|
-#define off80 r29
|
||
|
-#define off96 r30
|
||
|
-#define off112 r31
|
||
|
-
|
||
|
-#define const1 v24
|
||
|
-#define const2 v25
|
||
|
-
|
||
|
-#define byteswap v26
|
||
|
-#define mask_32bit v27
|
||
|
-#define mask_64bit v28
|
||
|
-#define zeroes v29
|
||
|
-
|
||
|
-#ifdef BYTESWAP_DATA
|
||
|
-#define VPERM(A, B, C, D) vperm A, B, C, D
|
||
|
-#else
|
||
|
-#define VPERM(A, B, C, D)
|
||
|
-#endif
|
||
|
-
|
||
|
-/* unsigned int __crc32_vpmsum(unsigned int crc, void *p, unsigned long len) */
|
||
|
-FUNC_START(__crc32_vpmsum)
|
||
|
- std r31,-8(r1)
|
||
|
- std r30,-16(r1)
|
||
|
- std r29,-24(r1)
|
||
|
- std r28,-32(r1)
|
||
|
- std r27,-40(r1)
|
||
|
- std r26,-48(r1)
|
||
|
- std r25,-56(r1)
|
||
|
-
|
||
|
- li off16,16
|
||
|
- li off32,32
|
||
|
- li off48,48
|
||
|
- li off64,64
|
||
|
- li off80,80
|
||
|
- li off96,96
|
||
|
- li off112,112
|
||
|
- li r0,0
|
||
|
-
|
||
|
- /* Enough room for saving 10 non volatile VMX registers */
|
||
|
- subi r6,r1,56+10*16
|
||
|
- subi r7,r1,56+2*16
|
||
|
-
|
||
|
- stvx v20,0,r6
|
||
|
- stvx v21,off16,r6
|
||
|
- stvx v22,off32,r6
|
||
|
- stvx v23,off48,r6
|
||
|
- stvx v24,off64,r6
|
||
|
- stvx v25,off80,r6
|
||
|
- stvx v26,off96,r6
|
||
|
- stvx v27,off112,r6
|
||
|
- stvx v28,0,r7
|
||
|
- stvx v29,off16,r7
|
||
|
-
|
||
|
- mr r10,r3
|
||
|
-
|
||
|
- vxor zeroes,zeroes,zeroes
|
||
|
- vspltisw v0,-1
|
||
|
-
|
||
|
- vsldoi mask_32bit,zeroes,v0,4
|
||
|
- vsldoi mask_64bit,zeroes,v0,8
|
||
|
-
|
||
|
- /* Get the initial value into v8 */
|
||
|
- vxor v8,v8,v8
|
||
|
- MTVRD(v8, r3)
|
||
|
-#ifdef REFLECT
|
||
|
- vsldoi v8,zeroes,v8,8 /* shift into bottom 32 bits */
|
||
|
-#else
|
||
|
- vsldoi v8,v8,zeroes,4 /* shift into top 32 bits */
|
||
|
-#endif
|
||
|
-
|
||
|
-#ifdef BYTESWAP_DATA
|
||
|
- addis r3,r2,.byteswap_constant@toc@ha
|
||
|
- addi r3,r3,.byteswap_constant@toc@l
|
||
|
-
|
||
|
- lvx byteswap,0,r3
|
||
|
- addi r3,r3,16
|
||
|
-#endif
|
||
|
-
|
||
|
- cmpdi r5,256
|
||
|
- blt .Lshort
|
||
|
-
|
||
|
- rldicr r6,r5,0,56
|
||
|
-
|
||
|
- /* Checksum in blocks of MAX_SIZE */
|
||
|
-1: lis r7,MAX_SIZE@h
|
||
|
- ori r7,r7,MAX_SIZE@l
|
||
|
- mr r9,r7
|
||
|
- cmpd r6,r7
|
||
|
- bgt 2f
|
||
|
- mr r7,r6
|
||
|
-2: subf r6,r7,r6
|
||
|
-
|
||
|
- /* our main loop does 128 bytes at a time */
|
||
|
- srdi r7,r7,7
|
||
|
-
|
||
|
- /*
|
||
|
- * Work out the offset into the constants table to start at. Each
|
||
|
- * constant is 16 bytes, and it is used against 128 bytes of input
|
||
|
- * data - 128 / 16 = 8
|
||
|
- */
|
||
|
- sldi r8,r7,4
|
||
|
- srdi r9,r9,3
|
||
|
- subf r8,r8,r9
|
||
|
-
|
||
|
- /* We reduce our final 128 bytes in a separate step */
|
||
|
- addi r7,r7,-1
|
||
|
- mtctr r7
|
||
|
-
|
||
|
- addis r3,r2,.constants@toc@ha
|
||
|
- addi r3,r3,.constants@toc@l
|
||
|
-
|
||
|
- /* Find the start of our constants */
|
||
|
- add r3,r3,r8
|
||
|
-
|
||
|
- /* zero v0-v7 which will contain our checksums */
|
||
|
- vxor v0,v0,v0
|
||
|
- vxor v1,v1,v1
|
||
|
- vxor v2,v2,v2
|
||
|
- vxor v3,v3,v3
|
||
|
- vxor v4,v4,v4
|
||
|
- vxor v5,v5,v5
|
||
|
- vxor v6,v6,v6
|
||
|
- vxor v7,v7,v7
|
||
|
-
|
||
|
- lvx const1,0,r3
|
||
|
-
|
||
|
- /*
|
||
|
- * If we are looping back to consume more data we use the values
|
||
|
- * already in v16-v23.
|
||
|
- */
|
||
|
- cmpdi r0,1
|
||
|
- beq 2f
|
||
|
-
|
||
|
- /* First warm up pass */
|
||
|
- lvx v16,0,r4
|
||
|
- lvx v17,off16,r4
|
||
|
- VPERM(v16,v16,v16,byteswap)
|
||
|
- VPERM(v17,v17,v17,byteswap)
|
||
|
- lvx v18,off32,r4
|
||
|
- lvx v19,off48,r4
|
||
|
- VPERM(v18,v18,v18,byteswap)
|
||
|
- VPERM(v19,v19,v19,byteswap)
|
||
|
- lvx v20,off64,r4
|
||
|
- lvx v21,off80,r4
|
||
|
- VPERM(v20,v20,v20,byteswap)
|
||
|
- VPERM(v21,v21,v21,byteswap)
|
||
|
- lvx v22,off96,r4
|
||
|
- lvx v23,off112,r4
|
||
|
- VPERM(v22,v22,v22,byteswap)
|
||
|
- VPERM(v23,v23,v23,byteswap)
|
||
|
- addi r4,r4,8*16
|
||
|
-
|
||
|
- /* xor in initial value */
|
||
|
- vxor v16,v16,v8
|
||
|
-
|
||
|
-2: bdz .Lfirst_warm_up_done
|
||
|
-
|
||
|
- addi r3,r3,16
|
||
|
- lvx const2,0,r3
|
||
|
-
|
||
|
- /* Second warm up pass */
|
||
|
- VPMSUMD(v8,v16,const1)
|
||
|
- lvx v16,0,r4
|
||
|
- VPERM(v16,v16,v16,byteswap)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- VPMSUMD(v9,v17,const1)
|
||
|
- lvx v17,off16,r4
|
||
|
- VPERM(v17,v17,v17,byteswap)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- VPMSUMD(v10,v18,const1)
|
||
|
- lvx v18,off32,r4
|
||
|
- VPERM(v18,v18,v18,byteswap)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- VPMSUMD(v11,v19,const1)
|
||
|
- lvx v19,off48,r4
|
||
|
- VPERM(v19,v19,v19,byteswap)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- VPMSUMD(v12,v20,const1)
|
||
|
- lvx v20,off64,r4
|
||
|
- VPERM(v20,v20,v20,byteswap)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- VPMSUMD(v13,v21,const1)
|
||
|
- lvx v21,off80,r4
|
||
|
- VPERM(v21,v21,v21,byteswap)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- VPMSUMD(v14,v22,const1)
|
||
|
- lvx v22,off96,r4
|
||
|
- VPERM(v22,v22,v22,byteswap)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- VPMSUMD(v15,v23,const1)
|
||
|
- lvx v23,off112,r4
|
||
|
- VPERM(v23,v23,v23,byteswap)
|
||
|
-
|
||
|
- addi r4,r4,8*16
|
||
|
-
|
||
|
- bdz .Lfirst_cool_down
|
||
|
-
|
||
|
- /*
|
||
|
- * main loop. We modulo schedule it such that it takes three iterations
|
||
|
- * to complete - first iteration load, second iteration vpmsum, third
|
||
|
- * iteration xor.
|
||
|
- */
|
||
|
- .balign 16
|
||
|
-4: lvx const1,0,r3
|
||
|
- addi r3,r3,16
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- vxor v0,v0,v8
|
||
|
- VPMSUMD(v8,v16,const2)
|
||
|
- lvx v16,0,r4
|
||
|
- VPERM(v16,v16,v16,byteswap)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- vxor v1,v1,v9
|
||
|
- VPMSUMD(v9,v17,const2)
|
||
|
- lvx v17,off16,r4
|
||
|
- VPERM(v17,v17,v17,byteswap)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- vxor v2,v2,v10
|
||
|
- VPMSUMD(v10,v18,const2)
|
||
|
- lvx v18,off32,r4
|
||
|
- VPERM(v18,v18,v18,byteswap)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- vxor v3,v3,v11
|
||
|
- VPMSUMD(v11,v19,const2)
|
||
|
- lvx v19,off48,r4
|
||
|
- VPERM(v19,v19,v19,byteswap)
|
||
|
- lvx const2,0,r3
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- vxor v4,v4,v12
|
||
|
- VPMSUMD(v12,v20,const1)
|
||
|
- lvx v20,off64,r4
|
||
|
- VPERM(v20,v20,v20,byteswap)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- vxor v5,v5,v13
|
||
|
- VPMSUMD(v13,v21,const1)
|
||
|
- lvx v21,off80,r4
|
||
|
- VPERM(v21,v21,v21,byteswap)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- vxor v6,v6,v14
|
||
|
- VPMSUMD(v14,v22,const1)
|
||
|
- lvx v22,off96,r4
|
||
|
- VPERM(v22,v22,v22,byteswap)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- vxor v7,v7,v15
|
||
|
- VPMSUMD(v15,v23,const1)
|
||
|
- lvx v23,off112,r4
|
||
|
- VPERM(v23,v23,v23,byteswap)
|
||
|
-
|
||
|
- addi r4,r4,8*16
|
||
|
-
|
||
|
- bdnz 4b
|
||
|
-
|
||
|
-.Lfirst_cool_down:
|
||
|
- /* First cool down pass */
|
||
|
- lvx const1,0,r3
|
||
|
- addi r3,r3,16
|
||
|
-
|
||
|
- vxor v0,v0,v8
|
||
|
- VPMSUMD(v8,v16,const1)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- vxor v1,v1,v9
|
||
|
- VPMSUMD(v9,v17,const1)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- vxor v2,v2,v10
|
||
|
- VPMSUMD(v10,v18,const1)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- vxor v3,v3,v11
|
||
|
- VPMSUMD(v11,v19,const1)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- vxor v4,v4,v12
|
||
|
- VPMSUMD(v12,v20,const1)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- vxor v5,v5,v13
|
||
|
- VPMSUMD(v13,v21,const1)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- vxor v6,v6,v14
|
||
|
- VPMSUMD(v14,v22,const1)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
- vxor v7,v7,v15
|
||
|
- VPMSUMD(v15,v23,const1)
|
||
|
- ori r2,r2,0
|
||
|
-
|
||
|
-.Lsecond_cool_down:
|
||
|
- /* Second cool down pass */
|
||
|
- vxor v0,v0,v8
|
||
|
- vxor v1,v1,v9
|
||
|
- vxor v2,v2,v10
|
||
|
- vxor v3,v3,v11
|
||
|
- vxor v4,v4,v12
|
||
|
- vxor v5,v5,v13
|
||
|
- vxor v6,v6,v14
|
||
|
- vxor v7,v7,v15
|
||
|
-
|
||
|
-#ifdef REFLECT
|
||
|
- /*
|
||
|
- * vpmsumd produces a 96 bit result in the least significant bits
|
||
|
- * of the register. Since we are bit reflected we have to shift it
|
||
|
- * left 32 bits so it occupies the least significant bits in the
|
||
|
- * bit reflected domain.
|
||
|
- */
|
||
|
- vsldoi v0,v0,zeroes,4
|
||
|
- vsldoi v1,v1,zeroes,4
|
||
|
- vsldoi v2,v2,zeroes,4
|
||
|
- vsldoi v3,v3,zeroes,4
|
||
|
- vsldoi v4,v4,zeroes,4
|
||
|
- vsldoi v5,v5,zeroes,4
|
||
|
- vsldoi v6,v6,zeroes,4
|
||
|
- vsldoi v7,v7,zeroes,4
|
||
|
-#endif
|
||
|
-
|
||
|
- /* xor with last 1024 bits */
|
||
|
- lvx v8,0,r4
|
||
|
- lvx v9,off16,r4
|
||
|
- VPERM(v8,v8,v8,byteswap)
|
||
|
- VPERM(v9,v9,v9,byteswap)
|
||
|
- lvx v10,off32,r4
|
||
|
- lvx v11,off48,r4
|
||
|
- VPERM(v10,v10,v10,byteswap)
|
||
|
- VPERM(v11,v11,v11,byteswap)
|
||
|
- lvx v12,off64,r4
|
||
|
- lvx v13,off80,r4
|
||
|
- VPERM(v12,v12,v12,byteswap)
|
||
|
- VPERM(v13,v13,v13,byteswap)
|
||
|
- lvx v14,off96,r4
|
||
|
- lvx v15,off112,r4
|
||
|
- VPERM(v14,v14,v14,byteswap)
|
||
|
- VPERM(v15,v15,v15,byteswap)
|
||
|
-
|
||
|
- addi r4,r4,8*16
|
||
|
-
|
||
|
- vxor v16,v0,v8
|
||
|
- vxor v17,v1,v9
|
||
|
- vxor v18,v2,v10
|
||
|
- vxor v19,v3,v11
|
||
|
- vxor v20,v4,v12
|
||
|
- vxor v21,v5,v13
|
||
|
- vxor v22,v6,v14
|
||
|
- vxor v23,v7,v15
|
||
|
-
|
||
|
- li r0,1
|
||
|
- cmpdi r6,0
|
||
|
- addi r6,r6,128
|
||
|
- bne 1b
|
||
|
-
|
||
|
- /* Work out how many bytes we have left */
|
||
|
- andi. r5,r5,127
|
||
|
-
|
||
|
- /* Calculate where in the constant table we need to start */
|
||
|
- subfic r6,r5,128
|
||
|
- add r3,r3,r6
|
||
|
-
|
||
|
- /* How many 16 byte chunks are in the tail */
|
||
|
- srdi r7,r5,4
|
||
|
- mtctr r7
|
||
|
-
|
||
|
- /*
|
||
|
- * Reduce the previously calculated 1024 bits to 64 bits, shifting
|
||
|
- * 32 bits to include the trailing 32 bits of zeros
|
||
|
- */
|
||
|
- lvx v0,0,r3
|
||
|
- lvx v1,off16,r3
|
||
|
- lvx v2,off32,r3
|
||
|
- lvx v3,off48,r3
|
||
|
- lvx v4,off64,r3
|
||
|
- lvx v5,off80,r3
|
||
|
- lvx v6,off96,r3
|
||
|
- lvx v7,off112,r3
|
||
|
- addi r3,r3,8*16
|
||
|
-
|
||
|
- VPMSUMW(v0,v16,v0)
|
||
|
- VPMSUMW(v1,v17,v1)
|
||
|
- VPMSUMW(v2,v18,v2)
|
||
|
- VPMSUMW(v3,v19,v3)
|
||
|
- VPMSUMW(v4,v20,v4)
|
||
|
- VPMSUMW(v5,v21,v5)
|
||
|
- VPMSUMW(v6,v22,v6)
|
||
|
- VPMSUMW(v7,v23,v7)
|
||
|
-
|
||
|
- /* Now reduce the tail (0 - 112 bytes) */
|
||
|
- cmpdi r7,0
|
||
|
- beq 1f
|
||
|
-
|
||
|
- lvx v16,0,r4
|
||
|
- lvx v17,0,r3
|
||
|
- VPERM(v16,v16,v16,byteswap)
|
||
|
- VPMSUMW(v16,v16,v17)
|
||
|
- vxor v0,v0,v16
|
||
|
- bdz 1f
|
||
|
-
|
||
|
- lvx v16,off16,r4
|
||
|
- lvx v17,off16,r3
|
||
|
- VPERM(v16,v16,v16,byteswap)
|
||
|
- VPMSUMW(v16,v16,v17)
|
||
|
- vxor v0,v0,v16
|
||
|
- bdz 1f
|
||
|
-
|
||
|
- lvx v16,off32,r4
|
||
|
- lvx v17,off32,r3
|
||
|
- VPERM(v16,v16,v16,byteswap)
|
||
|
- VPMSUMW(v16,v16,v17)
|
||
|
- vxor v0,v0,v16
|
||
|
- bdz 1f
|
||
|
-
|
||
|
- lvx v16,off48,r4
|
||
|
- lvx v17,off48,r3
|
||
|
- VPERM(v16,v16,v16,byteswap)
|
||
|
- VPMSUMW(v16,v16,v17)
|
||
|
- vxor v0,v0,v16
|
||
|
- bdz 1f
|
||
|
-
|
||
|
- lvx v16,off64,r4
|
||
|
- lvx v17,off64,r3
|
||
|
- VPERM(v16,v16,v16,byteswap)
|
||
|
- VPMSUMW(v16,v16,v17)
|
||
|
- vxor v0,v0,v16
|
||
|
- bdz 1f
|
||
|
-
|
||
|
- lvx v16,off80,r4
|
||
|
- lvx v17,off80,r3
|
||
|
- VPERM(v16,v16,v16,byteswap)
|
||
|
- VPMSUMW(v16,v16,v17)
|
||
|
- vxor v0,v0,v16
|
||
|
- bdz 1f
|
||
|
-
|
||
|
- lvx v16,off96,r4
|
||
|
- lvx v17,off96,r3
|
||
|
- VPERM(v16,v16,v16,byteswap)
|
||
|
- VPMSUMW(v16,v16,v17)
|
||
|
- vxor v0,v0,v16
|
||
|
-
|
||
|
- /* Now xor all the parallel chunks together */
|
||
|
-1: vxor v0,v0,v1
|
||
|
- vxor v2,v2,v3
|
||
|
- vxor v4,v4,v5
|
||
|
- vxor v6,v6,v7
|
||
|
-
|
||
|
- vxor v0,v0,v2
|
||
|
- vxor v4,v4,v6
|
||
|
-
|
||
|
- vxor v0,v0,v4
|
||
|
-
|
||
|
-.Lbarrett_reduction:
|
||
|
- /* Barrett constants */
|
||
|
- addis r3,r2,.barrett_constants@toc@ha
|
||
|
- addi r3,r3,.barrett_constants@toc@l
|
||
|
-
|
||
|
- lvx const1,0,r3
|
||
|
- lvx const2,off16,r3
|
||
|
-
|
||
|
- vsldoi v1,v0,v0,8
|
||
|
- vxor v0,v0,v1 /* xor two 64 bit results together */
|
||
|
-
|
||
|
-#ifdef REFLECT
|
||
|
- /* shift left one bit */
|
||
|
- vspltisb v1,1
|
||
|
- vsl v0,v0,v1
|
||
|
-#endif
|
||
|
-
|
||
|
- vand v0,v0,mask_64bit
|
||
|
-
|
||
|
-#ifndef REFLECT
|
||
|
- /*
|
||
|
- * Now for the Barrett reduction algorithm. The idea is to calculate q,
|
||
|
- * the multiple of our polynomial that we need to subtract. By
|
||
|
- * doing the computation 2x bits higher (ie 64 bits) and shifting the
|
||
|
- * result back down 2x bits, we round down to the nearest multiple.
|
||
|
- */
|
||
|
- VPMSUMD(v1,v0,const1) /* ma */
|
||
|
- vsldoi v1,zeroes,v1,8 /* q = floor(ma/(2^64)) */
|
||
|
- VPMSUMD(v1,v1,const2) /* qn */
|
||
|
- vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */
|
||
|
-
|
||
|
- /*
|
||
|
- * Get the result into r3. We need to shift it left 8 bytes:
|
||
|
- * V0 [ 0 1 2 X ]
|
||
|
- * V0 [ 0 X 2 3 ]
|
||
|
- */
|
||
|
- vsldoi v0,v0,zeroes,8 /* shift result into top 64 bits */
|
||
|
-#else
|
||
|
- /*
|
||
|
- * The reflected version of Barrett reduction. Instead of bit
|
||
|
- * reflecting our data (which is expensive to do), we bit reflect our
|
||
|
- * constants and our algorithm, which means the intermediate data in
|
||
|
- * our vector registers goes from 0-63 instead of 63-0. We can reflect
|
||
|
- * the algorithm because we don't carry in mod 2 arithmetic.
|
||
|
- */
|
||
|
- vand v1,v0,mask_32bit /* bottom 32 bits of a */
|
||
|
- VPMSUMD(v1,v1,const1) /* ma */
|
||
|
- vand v1,v1,mask_32bit /* bottom 32bits of ma */
|
||
|
- VPMSUMD(v1,v1,const2) /* qn */
|
||
|
- vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */
|
||
|
-
|
||
|
- /*
|
||
|
- * Since we are bit reflected, the result (ie the low 32 bits) is in
|
||
|
- * the high 32 bits. We just need to shift it left 4 bytes
|
||
|
- * V0 [ 0 1 X 3 ]
|
||
|
- * V0 [ 0 X 2 3 ]
|
||
|
- */
|
||
|
- vsldoi v0,v0,zeroes,4 /* shift result into top 64 bits of */
|
||
|
-#endif
|
||
|
-
|
||
|
- /* Get it into r3 */
|
||
|
- MFVRD(r3, v0)
|
||
|
-
|
||
|
-.Lout:
|
||
|
- subi r6,r1,56+10*16
|
||
|
- subi r7,r1,56+2*16
|
||
|
-
|
||
|
- lvx v20,0,r6
|
||
|
- lvx v21,off16,r6
|
||
|
- lvx v22,off32,r6
|
||
|
- lvx v23,off48,r6
|
||
|
- lvx v24,off64,r6
|
||
|
- lvx v25,off80,r6
|
||
|
- lvx v26,off96,r6
|
||
|
- lvx v27,off112,r6
|
||
|
- lvx v28,0,r7
|
||
|
- lvx v29,off16,r7
|
||
|
-
|
||
|
- ld r31,-8(r1)
|
||
|
- ld r30,-16(r1)
|
||
|
- ld r29,-24(r1)
|
||
|
- ld r28,-32(r1)
|
||
|
- ld r27,-40(r1)
|
||
|
- ld r26,-48(r1)
|
||
|
- ld r25,-56(r1)
|
||
|
-
|
||
|
- blr
|
||
|
-
|
||
|
-.Lfirst_warm_up_done:
|
||
|
- lvx const1,0,r3
|
||
|
- addi r3,r3,16
|
||
|
-
|
||
|
- VPMSUMD(v8,v16,const1)
|
||
|
- VPMSUMD(v9,v17,const1)
|
||
|
- VPMSUMD(v10,v18,const1)
|
||
|
- VPMSUMD(v11,v19,const1)
|
||
|
- VPMSUMD(v12,v20,const1)
|
||
|
- VPMSUMD(v13,v21,const1)
|
||
|
- VPMSUMD(v14,v22,const1)
|
||
|
- VPMSUMD(v15,v23,const1)
|
||
|
-
|
||
|
- b .Lsecond_cool_down
|
||
|
-
|
||
|
-.Lshort:
|
||
|
- cmpdi r5,0
|
||
|
- beq .Lzero
|
||
|
-
|
||
|
- addis r3,r2,.short_constants@toc@ha
|
||
|
- addi r3,r3,.short_constants@toc@l
|
||
|
-
|
||
|
- /* Calculate where in the constant table we need to start */
|
||
|
- subfic r6,r5,256
|
||
|
- add r3,r3,r6
|
||
|
-
|
||
|
- /* How many 16 byte chunks? */
|
||
|
- srdi r7,r5,4
|
||
|
- mtctr r7
|
||
|
-
|
||
|
- vxor v19,v19,v19
|
||
|
- vxor v20,v20,v20
|
||
|
-
|
||
|
- lvx v0,0,r4
|
||
|
- lvx v16,0,r3
|
||
|
- VPERM(v0,v0,v16,byteswap)
|
||
|
- vxor v0,v0,v8 /* xor in initial value */
|
||
|
- VPMSUMW(v0,v0,v16)
|
||
|
- bdz .Lv0
|
||
|
-
|
||
|
- lvx v1,off16,r4
|
||
|
- lvx v17,off16,r3
|
||
|
- VPERM(v1,v1,v17,byteswap)
|
||
|
- VPMSUMW(v1,v1,v17)
|
||
|
- bdz .Lv1
|
||
|
-
|
||
|
- lvx v2,off32,r4
|
||
|
- lvx v16,off32,r3
|
||
|
- VPERM(v2,v2,v16,byteswap)
|
||
|
- VPMSUMW(v2,v2,v16)
|
||
|
- bdz .Lv2
|
||
|
-
|
||
|
- lvx v3,off48,r4
|
||
|
- lvx v17,off48,r3
|
||
|
- VPERM(v3,v3,v17,byteswap)
|
||
|
- VPMSUMW(v3,v3,v17)
|
||
|
- bdz .Lv3
|
||
|
-
|
||
|
- lvx v4,off64,r4
|
||
|
- lvx v16,off64,r3
|
||
|
- VPERM(v4,v4,v16,byteswap)
|
||
|
- VPMSUMW(v4,v4,v16)
|
||
|
- bdz .Lv4
|
||
|
-
|
||
|
- lvx v5,off80,r4
|
||
|
- lvx v17,off80,r3
|
||
|
- VPERM(v5,v5,v17,byteswap)
|
||
|
- VPMSUMW(v5,v5,v17)
|
||
|
- bdz .Lv5
|
||
|
-
|
||
|
- lvx v6,off96,r4
|
||
|
- lvx v16,off96,r3
|
||
|
- VPERM(v6,v6,v16,byteswap)
|
||
|
- VPMSUMW(v6,v6,v16)
|
||
|
- bdz .Lv6
|
||
|
-
|
||
|
- lvx v7,off112,r4
|
||
|
- lvx v17,off112,r3
|
||
|
- VPERM(v7,v7,v17,byteswap)
|
||
|
- VPMSUMW(v7,v7,v17)
|
||
|
- bdz .Lv7
|
||
|
-
|
||
|
- addi r3,r3,128
|
||
|
- addi r4,r4,128
|
||
|
-
|
||
|
- lvx v8,0,r4
|
||
|
- lvx v16,0,r3
|
||
|
- VPERM(v8,v8,v16,byteswap)
|
||
|
- VPMSUMW(v8,v8,v16)
|
||
|
- bdz .Lv8
|
||
|
-
|
||
|
- lvx v9,off16,r4
|
||
|
- lvx v17,off16,r3
|
||
|
- VPERM(v9,v9,v17,byteswap)
|
||
|
- VPMSUMW(v9,v9,v17)
|
||
|
- bdz .Lv9
|
||
|
-
|
||
|
- lvx v10,off32,r4
|
||
|
- lvx v16,off32,r3
|
||
|
- VPERM(v10,v10,v16,byteswap)
|
||
|
- VPMSUMW(v10,v10,v16)
|
||
|
- bdz .Lv10
|
||
|
-
|
||
|
- lvx v11,off48,r4
|
||
|
- lvx v17,off48,r3
|
||
|
- VPERM(v11,v11,v17,byteswap)
|
||
|
- VPMSUMW(v11,v11,v17)
|
||
|
- bdz .Lv11
|
||
|
-
|
||
|
- lvx v12,off64,r4
|
||
|
- lvx v16,off64,r3
|
||
|
- VPERM(v12,v12,v16,byteswap)
|
||
|
- VPMSUMW(v12,v12,v16)
|
||
|
- bdz .Lv12
|
||
|
-
|
||
|
- lvx v13,off80,r4
|
||
|
- lvx v17,off80,r3
|
||
|
- VPERM(v13,v13,v17,byteswap)
|
||
|
- VPMSUMW(v13,v13,v17)
|
||
|
- bdz .Lv13
|
||
|
-
|
||
|
- lvx v14,off96,r4
|
||
|
- lvx v16,off96,r3
|
||
|
- VPERM(v14,v14,v16,byteswap)
|
||
|
- VPMSUMW(v14,v14,v16)
|
||
|
- bdz .Lv14
|
||
|
-
|
||
|
- lvx v15,off112,r4
|
||
|
- lvx v17,off112,r3
|
||
|
- VPERM(v15,v15,v17,byteswap)
|
||
|
- VPMSUMW(v15,v15,v17)
|
||
|
-
|
||
|
-.Lv15: vxor v19,v19,v15
|
||
|
-.Lv14: vxor v20,v20,v14
|
||
|
-.Lv13: vxor v19,v19,v13
|
||
|
-.Lv12: vxor v20,v20,v12
|
||
|
-.Lv11: vxor v19,v19,v11
|
||
|
-.Lv10: vxor v20,v20,v10
|
||
|
-.Lv9: vxor v19,v19,v9
|
||
|
-.Lv8: vxor v20,v20,v8
|
||
|
-.Lv7: vxor v19,v19,v7
|
||
|
-.Lv6: vxor v20,v20,v6
|
||
|
-.Lv5: vxor v19,v19,v5
|
||
|
-.Lv4: vxor v20,v20,v4
|
||
|
-.Lv3: vxor v19,v19,v3
|
||
|
-.Lv2: vxor v20,v20,v2
|
||
|
-.Lv1: vxor v19,v19,v1
|
||
|
-.Lv0: vxor v20,v20,v0
|
||
|
-
|
||
|
- vxor v0,v19,v20
|
||
|
-
|
||
|
- b .Lbarrett_reduction
|
||
|
-
|
||
|
-.Lzero:
|
||
|
- mr r3,r10
|
||
|
- b .Lout
|
||
|
-
|
||
|
-FUNC_END(__crc32_vpmsum)
|
||
|
diff --git a/util/crc32c_ppc_clang_workaround.h b/util/crc32c_ppc_clang_workaround.h
|
||
|
new file mode 100644
|
||
|
index 0000000000..fc4391a603
|
||
|
--- /dev/null
|
||
|
+++ b/util/crc32c_ppc_clang_workaround.h
|
||
|
@@ -0,0 +1,93 @@
|
||
|
+// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
||
|
+// Copyright (C) 2015, 2017 International Business Machines Corp.
|
||
|
+// All rights reserved.
|
||
|
+// This source code is licensed under both the GPLv2 (found in the
|
||
|
+// COPYING file in the root directory) and Apache 2.0 License
|
||
|
+// (found in the LICENSE.Apache file in the root directory).
|
||
|
+#ifndef CLANG_WORKAROUND_H
|
||
|
+#define CLANG_WORKAROUND_H
|
||
|
+
|
||
|
+/*
|
||
|
+ * These stubs fix clang incompatibilities with GCC builtins.
|
||
|
+ */
|
||
|
+
|
||
|
+#ifndef __builtin_crypto_vpmsumw
|
||
|
+#define __builtin_crypto_vpmsumw __builtin_crypto_vpmsumb
|
||
|
+#endif
|
||
|
+#ifndef __builtin_crypto_vpmsumd
|
||
|
+#define __builtin_crypto_vpmsumd __builtin_crypto_vpmsumb
|
||
|
+#endif
|
||
|
+
|
||
|
+static inline
|
||
|
+__vector unsigned long long __attribute__((overloadable))
|
||
|
+vec_ld(int __a, const __vector unsigned long long* __b)
|
||
|
+{
|
||
|
+ return (__vector unsigned long long)__builtin_altivec_lvx(__a, __b);
|
||
|
+}
|
||
|
+
|
||
|
+/*
|
||
|
+ * GCC __builtin_pack_vector_int128 returns a vector __int128_t but Clang
|
||
|
+ * does not recognize this type. On GCC this builtin is translated to a
|
||
|
+ * xxpermdi instruction that only moves the registers __a, __b instead generates
|
||
|
+ * a load.
|
||
|
+ *
|
||
|
+ * Clang has vec_xxpermdi intrinsics. It was implemented in 4.0.0.
|
||
|
+ */
|
||
|
+static inline
|
||
|
+__vector unsigned long long __builtin_pack_vector (unsigned long __a,
|
||
|
+ unsigned long __b)
|
||
|
+{
|
||
|
+ #if defined(__BIG_ENDIAN__)
|
||
|
+ __vector unsigned long long __v = {__a, __b};
|
||
|
+ #else
|
||
|
+ __vector unsigned long long __v = {__b, __a};
|
||
|
+ #endif
|
||
|
+ return __v;
|
||
|
+}
|
||
|
+
|
||
|
+/*
|
||
|
+ * Clang 7 changed the behavior of vec_xxpermdi in order to provide the same
|
||
|
+ * behavior of GCC. That means code adapted to Clang >= 7 does not work on
|
||
|
+ * Clang <= 6. So, fallback to __builtin_unpack_vector() on Clang <= 6.
|
||
|
+ */
|
||
|
+#if !defined vec_xxpermdi || __clang_major__ <= 6
|
||
|
+
|
||
|
+static inline
|
||
|
+unsigned long __builtin_unpack_vector (__vector unsigned long long __v,
|
||
|
+ int __o)
|
||
|
+{
|
||
|
+ return __v[__o];
|
||
|
+}
|
||
|
+
|
||
|
+#if defined(__BIG_ENDIAN__)
|
||
|
+#define __builtin_unpack_vector_0(a) __builtin_unpack_vector ((a), 0)
|
||
|
+#define __builtin_unpack_vector_1(a) __builtin_unpack_vector ((a), 1)
|
||
|
+#else
|
||
|
+#define __builtin_unpack_vector_0(a) __builtin_unpack_vector ((a), 1)
|
||
|
+#define __builtin_unpack_vector_1(a) __builtin_unpack_vector ((a), 0)
|
||
|
+#endif
|
||
|
+
|
||
|
+#else
|
||
|
+
|
||
|
+static inline
|
||
|
+unsigned long __builtin_unpack_vector_0 (__vector unsigned long long __v)
|
||
|
+{
|
||
|
+ #if defined(__BIG_ENDIAN__)
|
||
|
+ return vec_xxpermdi(__v, __v, 0x0)[0];
|
||
|
+ #else
|
||
|
+ return vec_xxpermdi(__v, __v, 0x3)[0];
|
||
|
+ #endif
|
||
|
+}
|
||
|
+
|
||
|
+static inline
|
||
|
+unsigned long __builtin_unpack_vector_1 (__vector unsigned long long __v)
|
||
|
+{
|
||
|
+ #if defined(__BIG_ENDIAN__)
|
||
|
+ return vec_xxpermdi(__v, __v, 0x3)[0];
|
||
|
+ #else
|
||
|
+ return vec_xxpermdi(__v, __v, 0x0)[0];
|
||
|
+ #endif
|
||
|
+}
|
||
|
+#endif /* vec_xxpermdi */
|
||
|
+
|
||
|
+#endif
|
||
|
diff --git a/util/crc32c_ppc_constants.h b/util/crc32c_ppc_constants.h
|
||
|
index f6494cd01c..b558d46777 100644
|
||
|
--- a/util/crc32c_ppc_constants.h
|
||
|
+++ b/util/crc32c_ppc_constants.h
|
||
|
@@ -5,896 +5,1206 @@
|
||
|
// COPYING file in the root directory) and Apache 2.0 License
|
||
|
// (found in the LICENSE.Apache file in the root directory).
|
||
|
|
||
|
-#pragma once
|
||
|
+/*
|
||
|
+*
|
||
|
+* THIS FILE IS GENERATED WITH
|
||
|
+./crc32_constants -r -x 0x1edc6f41
|
||
|
+
|
||
|
+* This is from https://github.com/antonblanchard/crc32-vpmsum/
|
||
|
+* DO NOT MODIFY IT MANUALLY!
|
||
|
+*
|
||
|
+*/
|
||
|
|
||
|
#define CRC 0x1edc6f41
|
||
|
-#define REFLECT
|
||
|
#define CRC_XOR
|
||
|
+#define REFLECT
|
||
|
+#define MAX_SIZE 32768
|
||
|
|
||
|
-#ifndef __ASSEMBLY__
|
||
|
#ifdef CRC_TABLE
|
||
|
static const unsigned int crc_table[] = {
|
||
|
- 0x00000000, 0xf26b8303, 0xe13b70f7, 0x1350f3f4, 0xc79a971f, 0x35f1141c,
|
||
|
- 0x26a1e7e8, 0xd4ca64eb, 0x8ad958cf, 0x78b2dbcc, 0x6be22838, 0x9989ab3b,
|
||
|
- 0x4d43cfd0, 0xbf284cd3, 0xac78bf27, 0x5e133c24, 0x105ec76f, 0xe235446c,
|
||
|
- 0xf165b798, 0x030e349b, 0xd7c45070, 0x25afd373, 0x36ff2087, 0xc494a384,
|
||
|
- 0x9a879fa0, 0x68ec1ca3, 0x7bbcef57, 0x89d76c54, 0x5d1d08bf, 0xaf768bbc,
|
||
|
- 0xbc267848, 0x4e4dfb4b, 0x20bd8ede, 0xd2d60ddd, 0xc186fe29, 0x33ed7d2a,
|
||
|
- 0xe72719c1, 0x154c9ac2, 0x061c6936, 0xf477ea35, 0xaa64d611, 0x580f5512,
|
||
|
- 0x4b5fa6e6, 0xb93425e5, 0x6dfe410e, 0x9f95c20d, 0x8cc531f9, 0x7eaeb2fa,
|
||
|
- 0x30e349b1, 0xc288cab2, 0xd1d83946, 0x23b3ba45, 0xf779deae, 0x05125dad,
|
||
|
- 0x1642ae59, 0xe4292d5a, 0xba3a117e, 0x4851927d, 0x5b016189, 0xa96ae28a,
|
||
|
- 0x7da08661, 0x8fcb0562, 0x9c9bf696, 0x6ef07595, 0x417b1dbc, 0xb3109ebf,
|
||
|
- 0xa0406d4b, 0x522bee48, 0x86e18aa3, 0x748a09a0, 0x67dafa54, 0x95b17957,
|
||
|
- 0xcba24573, 0x39c9c670, 0x2a993584, 0xd8f2b687, 0x0c38d26c, 0xfe53516f,
|
||
|
- 0xed03a29b, 0x1f682198, 0x5125dad3, 0xa34e59d0, 0xb01eaa24, 0x42752927,
|
||
|
- 0x96bf4dcc, 0x64d4cecf, 0x77843d3b, 0x85efbe38, 0xdbfc821c, 0x2997011f,
|
||
|
- 0x3ac7f2eb, 0xc8ac71e8, 0x1c661503, 0xee0d9600, 0xfd5d65f4, 0x0f36e6f7,
|
||
|
- 0x61c69362, 0x93ad1061, 0x80fde395, 0x72966096, 0xa65c047d, 0x5437877e,
|
||
|
- 0x4767748a, 0xb50cf789, 0xeb1fcbad, 0x197448ae, 0x0a24bb5a, 0xf84f3859,
|
||
|
- 0x2c855cb2, 0xdeeedfb1, 0xcdbe2c45, 0x3fd5af46, 0x7198540d, 0x83f3d70e,
|
||
|
- 0x90a324fa, 0x62c8a7f9, 0xb602c312, 0x44694011, 0x5739b3e5, 0xa55230e6,
|
||
|
- 0xfb410cc2, 0x092a8fc1, 0x1a7a7c35, 0xe811ff36, 0x3cdb9bdd, 0xceb018de,
|
||
|
- 0xdde0eb2a, 0x2f8b6829, 0x82f63b78, 0x709db87b, 0x63cd4b8f, 0x91a6c88c,
|
||
|
- 0x456cac67, 0xb7072f64, 0xa457dc90, 0x563c5f93, 0x082f63b7, 0xfa44e0b4,
|
||
|
- 0xe9141340, 0x1b7f9043, 0xcfb5f4a8, 0x3dde77ab, 0x2e8e845f, 0xdce5075c,
|
||
|
- 0x92a8fc17, 0x60c37f14, 0x73938ce0, 0x81f80fe3, 0x55326b08, 0xa759e80b,
|
||
|
- 0xb4091bff, 0x466298fc, 0x1871a4d8, 0xea1a27db, 0xf94ad42f, 0x0b21572c,
|
||
|
- 0xdfeb33c7, 0x2d80b0c4, 0x3ed04330, 0xccbbc033, 0xa24bb5a6, 0x502036a5,
|
||
|
- 0x4370c551, 0xb11b4652, 0x65d122b9, 0x97baa1ba, 0x84ea524e, 0x7681d14d,
|
||
|
- 0x2892ed69, 0xdaf96e6a, 0xc9a99d9e, 0x3bc21e9d, 0xef087a76, 0x1d63f975,
|
||
|
- 0x0e330a81, 0xfc588982, 0xb21572c9, 0x407ef1ca, 0x532e023e, 0xa145813d,
|
||
|
- 0x758fe5d6, 0x87e466d5, 0x94b49521, 0x66df1622, 0x38cc2a06, 0xcaa7a905,
|
||
|
- 0xd9f75af1, 0x2b9cd9f2, 0xff56bd19, 0x0d3d3e1a, 0x1e6dcdee, 0xec064eed,
|
||
|
- 0xc38d26c4, 0x31e6a5c7, 0x22b65633, 0xd0ddd530, 0x0417b1db, 0xf67c32d8,
|
||
|
- 0xe52cc12c, 0x1747422f, 0x49547e0b, 0xbb3ffd08, 0xa86f0efc, 0x5a048dff,
|
||
|
- 0x8ecee914, 0x7ca56a17, 0x6ff599e3, 0x9d9e1ae0, 0xd3d3e1ab, 0x21b862a8,
|
||
|
- 0x32e8915c, 0xc083125f, 0x144976b4, 0xe622f5b7, 0xf5720643, 0x07198540,
|
||
|
- 0x590ab964, 0xab613a67, 0xb831c993, 0x4a5a4a90, 0x9e902e7b, 0x6cfbad78,
|
||
|
- 0x7fab5e8c, 0x8dc0dd8f, 0xe330a81a, 0x115b2b19, 0x020bd8ed, 0xf0605bee,
|
||
|
- 0x24aa3f05, 0xd6c1bc06, 0xc5914ff2, 0x37faccf1, 0x69e9f0d5, 0x9b8273d6,
|
||
|
- 0x88d28022, 0x7ab90321, 0xae7367ca, 0x5c18e4c9, 0x4f48173d, 0xbd23943e,
|
||
|
- 0xf36e6f75, 0x0105ec76, 0x12551f82, 0xe03e9c81, 0x34f4f86a, 0xc69f7b69,
|
||
|
- 0xd5cf889d, 0x27a40b9e, 0x79b737ba, 0x8bdcb4b9, 0x988c474d, 0x6ae7c44e,
|
||
|
- 0xbe2da0a5, 0x4c4623a6, 0x5f16d052, 0xad7d5351,
|
||
|
-};
|
||
|
-
|
||
|
-#endif
|
||
|
-
|
||
|
-#else
|
||
|
-#define MAX_SIZE 32768
|
||
|
-.constants :
|
||
|
-
|
||
|
- /* Reduce 262144 kbits to 1024 bits */
|
||
|
- /* x^261120 mod p(x)` << 1, x^261184 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000b6ca9e20000000009c37c408
|
||
|
-
|
||
|
- /* x^260096 mod p(x)` << 1, x^260160 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000350249a800000001b51df26c
|
||
|
-
|
||
|
- /* x^259072 mod p(x)` << 1, x^259136 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001862dac54000000000724b9d0
|
||
|
-
|
||
|
- /* x^258048 mod p(x)` << 1, x^258112 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001d87fb48c00000001c00532fe
|
||
|
-
|
||
|
- /* x^257024 mod p(x)` << 1, x^257088 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001f39b699e00000000f05a9362
|
||
|
-
|
||
|
- /* x^256000 mod p(x)` << 1, x^256064 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000101da11b400000001e1007970
|
||
|
-
|
||
|
- /* x^254976 mod p(x)` << 1, x^255040 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001cab571e000000000a57366ee
|
||
|
-
|
||
|
- /* x^253952 mod p(x)` << 1, x^254016 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000c7020cfe0000000192011284
|
||
|
-
|
||
|
- /* x^252928 mod p(x)` << 1, x^252992 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000cdaed1ae0000000162716d9a
|
||
|
-
|
||
|
- /* x^251904 mod p(x)` << 1, x^251968 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001e804effc00000000cd97ecde
|
||
|
-
|
||
|
- /* x^250880 mod p(x)` << 1, x^250944 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000077c3ea3a0000000058812bc0
|
||
|
-
|
||
|
- /* x^249856 mod p(x)` << 1, x^249920 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000068df31b40000000088b8c12e
|
||
|
-
|
||
|
- /* x^248832 mod p(x)` << 1, x^248896 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000b059b6c200000001230b234c
|
||
|
-
|
||
|
- /* x^247808 mod p(x)` << 1, x^247872 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000145fb8ed800000001120b416e
|
||
|
-
|
||
|
- /* x^246784 mod p(x)` << 1, x^246848 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000cbc0916800000001974aecb0
|
||
|
-
|
||
|
- /* x^245760 mod p(x)` << 1, x^245824 mod p(x)` << 1 */
|
||
|
- .octa 0x000000005ceeedc2000000008ee3f226
|
||
|
-
|
||
|
- /* x^244736 mod p(x)` << 1, x^244800 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000047d74e8600000001089aba9a
|
||
|
-
|
||
|
- /* x^243712 mod p(x)` << 1, x^243776 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001407e9e220000000065113872
|
||
|
-
|
||
|
- /* x^242688 mod p(x)` << 1, x^242752 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001da967bda000000005c07ec10
|
||
|
-
|
||
|
- /* x^241664 mod p(x)` << 1, x^241728 mod p(x)` << 1 */
|
||
|
- .octa 0x000000006c8983680000000187590924
|
||
|
-
|
||
|
- /* x^240640 mod p(x)` << 1, x^240704 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000f2d14c9800000000e35da7c6
|
||
|
-
|
||
|
- /* x^239616 mod p(x)` << 1, x^239680 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001993c6ad4000000000415855a
|
||
|
-
|
||
|
- /* x^238592 mod p(x)` << 1, x^238656 mod p(x)` << 1 */
|
||
|
- .octa 0x000000014683d1ac0000000073617758
|
||
|
-
|
||
|
- /* x^237568 mod p(x)` << 1, x^237632 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001a7c93e6c0000000176021d28
|
||
|
-
|
||
|
- /* x^236544 mod p(x)` << 1, x^236608 mod p(x)` << 1 */
|
||
|
- .octa 0x000000010211e90a00000001c358fd0a
|
||
|
-
|
||
|
- /* x^235520 mod p(x)` << 1, x^235584 mod p(x)` << 1 */
|
||
|
- .octa 0x000000001119403e00000001ff7a2c18
|
||
|
-
|
||
|
- /* x^234496 mod p(x)` << 1, x^234560 mod p(x)` << 1 */
|
||
|
- .octa 0x000000001c3261aa00000000f2d9f7e4
|
||
|
-
|
||
|
- /* x^233472 mod p(x)` << 1, x^233536 mod p(x)` << 1 */
|
||
|
- .octa 0x000000014e37a634000000016cf1f9c8
|
||
|
-
|
||
|
- /* x^232448 mod p(x)` << 1, x^232512 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000073786c0c000000010af9279a
|
||
|
-
|
||
|
- /* x^231424 mod p(x)` << 1, x^231488 mod p(x)` << 1 */
|
||
|
- .octa 0x000000011dc037f80000000004f101e8
|
||
|
-
|
||
|
- /* x^230400 mod p(x)` << 1, x^230464 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000031433dfc0000000070bcf184
|
||
|
-
|
||
|
- /* x^229376 mod p(x)` << 1, x^229440 mod p(x)` << 1 */
|
||
|
- .octa 0x000000009cde8348000000000a8de642
|
||
|
-
|
||
|
- /* x^228352 mod p(x)` << 1, x^228416 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000038d3c2a60000000062ea130c
|
||
|
-
|
||
|
- /* x^227328 mod p(x)` << 1, x^227392 mod p(x)` << 1 */
|
||
|
- .octa 0x000000011b25f26000000001eb31cbb2
|
||
|
-
|
||
|
- /* x^226304 mod p(x)` << 1, x^226368 mod p(x)` << 1 */
|
||
|
- .octa 0x000000001629e6f00000000170783448
|
||
|
-
|
||
|
- /* x^225280 mod p(x)` << 1, x^225344 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000160838b4c00000001a684b4c6
|
||
|
-
|
||
|
- /* x^224256 mod p(x)` << 1, x^224320 mod p(x)` << 1 */
|
||
|
- .octa 0x000000007a44011c00000000253ca5b4
|
||
|
-
|
||
|
- /* x^223232 mod p(x)` << 1, x^223296 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000226f417a0000000057b4b1e2
|
||
|
-
|
||
|
- /* x^222208 mod p(x)` << 1, x^222272 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000045eb2eb400000000b6bd084c
|
||
|
-
|
||
|
- /* x^221184 mod p(x)` << 1, x^221248 mod p(x)` << 1 */
|
||
|
- .octa 0x000000014459d70c0000000123c2d592
|
||
|
-
|
||
|
- /* x^220160 mod p(x)` << 1, x^220224 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001d406ed8200000000159dafce
|
||
|
-
|
||
|
- /* x^219136 mod p(x)` << 1, x^219200 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000160c8e1a80000000127e1a64e
|
||
|
-
|
||
|
- /* x^218112 mod p(x)` << 1, x^218176 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000027ba80980000000056860754
|
||
|
-
|
||
|
- /* x^217088 mod p(x)` << 1, x^217152 mod p(x)` << 1 */
|
||
|
- .octa 0x000000006d92d01800000001e661aae8
|
||
|
-
|
||
|
- /* x^216064 mod p(x)` << 1, x^216128 mod p(x)` << 1 */
|
||
|
- .octa 0x000000012ed7e3f200000000f82c6166
|
||
|
-
|
||
|
- /* x^215040 mod p(x)` << 1, x^215104 mod p(x)` << 1 */
|
||
|
- .octa 0x000000002dc8778800000000c4f9c7ae
|
||
|
-
|
||
|
- /* x^214016 mod p(x)` << 1, x^214080 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000018240bb80000000074203d20
|
||
|
-
|
||
|
- /* x^212992 mod p(x)` << 1, x^213056 mod p(x)` << 1 */
|
||
|
- .octa 0x000000001ad381580000000198173052
|
||
|
-
|
||
|
- /* x^211968 mod p(x)` << 1, x^212032 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001396b78f200000001ce8aba54
|
||
|
-
|
||
|
- /* x^210944 mod p(x)` << 1, x^211008 mod p(x)` << 1 */
|
||
|
- .octa 0x000000011a68133400000001850d5d94
|
||
|
-
|
||
|
- /* x^209920 mod p(x)` << 1, x^209984 mod p(x)` << 1 */
|
||
|
- .octa 0x000000012104732e00000001d609239c
|
||
|
-
|
||
|
- /* x^208896 mod p(x)` << 1, x^208960 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000a140d90c000000001595f048
|
||
|
-
|
||
|
- /* x^207872 mod p(x)` << 1, x^207936 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001b7215eda0000000042ccee08
|
||
|
-
|
||
|
- /* x^206848 mod p(x)` << 1, x^206912 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001aaf1df3c000000010a389d74
|
||
|
-
|
||
|
- /* x^205824 mod p(x)` << 1, x^205888 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000029d15b8a000000012a840da6
|
||
|
-
|
||
|
- /* x^204800 mod p(x)` << 1, x^204864 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000f1a96922000000001d181c0c
|
||
|
-
|
||
|
- /* x^203776 mod p(x)` << 1, x^203840 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001ac80d03c0000000068b7d1f6
|
||
|
-
|
||
|
- /* x^202752 mod p(x)` << 1, x^202816 mod p(x)` << 1 */
|
||
|
- .octa 0x000000000f11d56a000000005b0f14fc
|
||
|
-
|
||
|
- /* x^201728 mod p(x)` << 1, x^201792 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001f1c022a20000000179e9e730
|
||
|
-
|
||
|
- /* x^200704 mod p(x)` << 1, x^200768 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000173d00ae200000001ce1368d6
|
||
|
-
|
||
|
- /* x^199680 mod p(x)` << 1, x^199744 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001d4ffe4ac0000000112c3a84c
|
||
|
-
|
||
|
- /* x^198656 mod p(x)` << 1, x^198720 mod p(x)` << 1 */
|
||
|
- .octa 0x000000016edc5ae400000000de940fee
|
||
|
-
|
||
|
- /* x^197632 mod p(x)` << 1, x^197696 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001f1a0214000000000fe896b7e
|
||
|
-
|
||
|
- /* x^196608 mod p(x)` << 1, x^196672 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000ca0b28a000000001f797431c
|
||
|
-
|
||
|
- /* x^195584 mod p(x)` << 1, x^195648 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001928e30a20000000053e989ba
|
||
|
-
|
||
|
- /* x^194560 mod p(x)` << 1, x^194624 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000097b1b002000000003920cd16
|
||
|
-
|
||
|
- /* x^193536 mod p(x)` << 1, x^193600 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000b15bf90600000001e6f579b8
|
||
|
-
|
||
|
- /* x^192512 mod p(x)` << 1, x^192576 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000411c5d52000000007493cb0a
|
||
|
-
|
||
|
- /* x^191488 mod p(x)` << 1, x^191552 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001c36f330000000001bdd376d8
|
||
|
-
|
||
|
- /* x^190464 mod p(x)` << 1, x^190528 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001119227e0000000016badfee6
|
||
|
-
|
||
|
- /* x^189440 mod p(x)` << 1, x^189504 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000114d47020000000071de5c58
|
||
|
-
|
||
|
- /* x^188416 mod p(x)` << 1, x^188480 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000458b5b9800000000453f317c
|
||
|
-
|
||
|
- /* x^187392 mod p(x)` << 1, x^187456 mod p(x)` << 1 */
|
||
|
- .octa 0x000000012e31fb8e0000000121675cce
|
||
|
-
|
||
|
- /* x^186368 mod p(x)` << 1, x^186432 mod p(x)` << 1 */
|
||
|
- .octa 0x000000005cf619d800000001f409ee92
|
||
|
-
|
||
|
- /* x^185344 mod p(x)` << 1, x^185408 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000063f4d8b200000000f36b9c88
|
||
|
-
|
||
|
- /* x^184320 mod p(x)` << 1, x^184384 mod p(x)` << 1 */
|
||
|
- .octa 0x000000004138dc8a0000000036b398f4
|
||
|
-
|
||
|
- /* x^183296 mod p(x)` << 1, x^183360 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001d29ee8e000000001748f9adc
|
||
|
-
|
||
|
- /* x^182272 mod p(x)` << 1, x^182336 mod p(x)` << 1 */
|
||
|
- .octa 0x000000006a08ace800000001be94ec00
|
||
|
-
|
||
|
- /* x^181248 mod p(x)` << 1, x^181312 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000127d4201000000000b74370d6
|
||
|
-
|
||
|
- /* x^180224 mod p(x)` << 1, x^180288 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000019d76b6200000001174d0b98
|
||
|
-
|
||
|
- /* x^179200 mod p(x)` << 1, x^179264 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001b1471f6e00000000befc06a4
|
||
|
-
|
||
|
- /* x^178176 mod p(x)` << 1, x^178240 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001f64c19cc00000001ae125288
|
||
|
-
|
||
|
- /* x^177152 mod p(x)` << 1, x^177216 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000003c0ea00000000095c19b34
|
||
|
-
|
||
|
- /* x^176128 mod p(x)` << 1, x^176192 mod p(x)` << 1 */
|
||
|
- .octa 0x000000014d73abf600000001a78496f2
|
||
|
-
|
||
|
- /* x^175104 mod p(x)` << 1, x^175168 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001620eb84400000001ac5390a0
|
||
|
-
|
||
|
- /* x^174080 mod p(x)` << 1, x^174144 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000147655048000000002a80ed6e
|
||
|
-
|
||
|
- /* x^173056 mod p(x)` << 1, x^173120 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000067b5077e00000001fa9b0128
|
||
|
-
|
||
|
- /* x^172032 mod p(x)` << 1, x^172096 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000010ffe20600000001ea94929e
|
||
|
-
|
||
|
- /* x^171008 mod p(x)` << 1, x^171072 mod p(x)` << 1 */
|
||
|
- .octa 0x000000000fee8f1e0000000125f4305c
|
||
|
-
|
||
|
- /* x^169984 mod p(x)` << 1, x^170048 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001da26fbae00000001471e2002
|
||
|
-
|
||
|
- /* x^168960 mod p(x)` << 1, x^169024 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001b3a8bd880000000132d2253a
|
||
|
-
|
||
|
- /* x^167936 mod p(x)` << 1, x^168000 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000e8f3898e00000000f26b3592
|
||
|
-
|
||
|
- /* x^166912 mod p(x)` << 1, x^166976 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000b0d0d28c00000000bc8b67b0
|
||
|
-
|
||
|
- /* x^165888 mod p(x)` << 1, x^165952 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000030f2a798000000013a826ef2
|
||
|
-
|
||
|
- /* x^164864 mod p(x)` << 1, x^164928 mod p(x)` << 1 */
|
||
|
- .octa 0x000000000fba10020000000081482c84
|
||
|
-
|
||
|
- /* x^163840 mod p(x)` << 1, x^163904 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000bdb9bd7200000000e77307c2
|
||
|
-
|
||
|
- /* x^162816 mod p(x)` << 1, x^162880 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000075d3bf5a00000000d4a07ec8
|
||
|
-
|
||
|
- /* x^161792 mod p(x)` << 1, x^161856 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000ef1f98a00000000017102100
|
||
|
-
|
||
|
- /* x^160768 mod p(x)` << 1, x^160832 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000689c760200000000db406486
|
||
|
-
|
||
|
- /* x^159744 mod p(x)` << 1, x^159808 mod p(x)` << 1 */
|
||
|
- .octa 0x000000016d5fa5fe0000000192db7f88
|
||
|
-
|
||
|
- /* x^158720 mod p(x)` << 1, x^158784 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001d0d2b9ca000000018bf67b1e
|
||
|
-
|
||
|
- /* x^157696 mod p(x)` << 1, x^157760 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000041e7b470000000007c09163e
|
||
|
-
|
||
|
- /* x^156672 mod p(x)` << 1, x^156736 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001cbb6495e000000000adac060
|
||
|
-
|
||
|
- /* x^155648 mod p(x)` << 1, x^155712 mod p(x)` << 1 */
|
||
|
- .octa 0x000000010052a0b000000000bd8316ae
|
||
|
-
|
||
|
- /* x^154624 mod p(x)` << 1, x^154688 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001d8effb5c000000019f09ab54
|
||
|
-
|
||
|
- /* x^153600 mod p(x)` << 1, x^153664 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001d969853c0000000125155542
|
||
|
-
|
||
|
- /* x^152576 mod p(x)` << 1, x^152640 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000523ccce2000000018fdb5882
|
||
|
-
|
||
|
- /* x^151552 mod p(x)` << 1, x^151616 mod p(x)` << 1 */
|
||
|
- .octa 0x000000001e2436bc00000000e794b3f4
|
||
|
-
|
||
|
- /* x^150528 mod p(x)` << 1, x^150592 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000ddd1c3a2000000016f9bb022
|
||
|
-
|
||
|
- /* x^149504 mod p(x)` << 1, x^149568 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000019fcfe3800000000290c9978
|
||
|
-
|
||
|
- /* x^148480 mod p(x)` << 1, x^148544 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001ce95db640000000083c0f350
|
||
|
-
|
||
|
- /* x^147456 mod p(x)` << 1, x^147520 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000af5828060000000173ea6628
|
||
|
-
|
||
|
- /* x^146432 mod p(x)` << 1, x^146496 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001006388f600000001c8b4e00a
|
||
|
-
|
||
|
- /* x^145408 mod p(x)` << 1, x^145472 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000179eca00a00000000de95d6aa
|
||
|
-
|
||
|
- /* x^144384 mod p(x)` << 1, x^144448 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000122410a6a000000010b7f7248
|
||
|
-
|
||
|
- /* x^143360 mod p(x)` << 1, x^143424 mod p(x)` << 1 */
|
||
|
- .octa 0x000000004288e87c00000001326e3a06
|
||
|
-
|
||
|
- /* x^142336 mod p(x)` << 1, x^142400 mod p(x)` << 1 */
|
||
|
- .octa 0x000000016c5490da00000000bb62c2e6
|
||
|
-
|
||
|
- /* x^141312 mod p(x)` << 1, x^141376 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000d1c71f6e0000000156a4b2c2
|
||
|
-
|
||
|
- /* x^140288 mod p(x)` << 1, x^140352 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001b4ce08a6000000011dfe763a
|
||
|
-
|
||
|
- /* x^139264 mod p(x)` << 1, x^139328 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001466ba60c000000007bcca8e2
|
||
|
-
|
||
|
- /* x^138240 mod p(x)` << 1, x^138304 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001f6c488a40000000186118faa
|
||
|
-
|
||
|
- /* x^137216 mod p(x)` << 1, x^137280 mod p(x)` << 1 */
|
||
|
- .octa 0x000000013bfb06820000000111a65a88
|
||
|
-
|
||
|
- /* x^136192 mod p(x)` << 1, x^136256 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000690e9e54000000003565e1c4
|
||
|
-
|
||
|
- /* x^135168 mod p(x)` << 1, x^135232 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000281346b6000000012ed02a82
|
||
|
-
|
||
|
- /* x^134144 mod p(x)` << 1, x^134208 mod p(x)` << 1 */
|
||
|
- .octa 0x000000015646402400000000c486ecfc
|
||
|
-
|
||
|
- /* x^133120 mod p(x)` << 1, x^133184 mod p(x)` << 1 */
|
||
|
- .octa 0x000000016063a8dc0000000001b951b2
|
||
|
-
|
||
|
- /* x^132096 mod p(x)` << 1, x^132160 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000116a663620000000048143916
|
||
|
-
|
||
|
- /* x^131072 mod p(x)` << 1, x^131136 mod p(x)` << 1 */
|
||
|
- .octa 0x000000017e8aa4d200000001dc2ae124
|
||
|
-
|
||
|
- /* x^130048 mod p(x)` << 1, x^130112 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001728eb10c00000001416c58d6
|
||
|
-
|
||
|
- /* x^129024 mod p(x)` << 1, x^129088 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001b08fd7fa00000000a479744a
|
||
|
-
|
||
|
- /* x^128000 mod p(x)` << 1, x^128064 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001092a16e80000000096ca3a26
|
||
|
-
|
||
|
- /* x^126976 mod p(x)` << 1, x^127040 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000a505637c00000000ff223d4e
|
||
|
-
|
||
|
- /* x^125952 mod p(x)` << 1, x^126016 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000d94869b2000000010e84da42
|
||
|
-
|
||
|
- /* x^124928 mod p(x)` << 1, x^124992 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001c8b203ae00000001b61ba3d0
|
||
|
-
|
||
|
- /* x^123904 mod p(x)` << 1, x^123968 mod p(x)` << 1 */
|
||
|
- .octa 0x000000005704aea000000000680f2de8
|
||
|
-
|
||
|
- /* x^122880 mod p(x)` << 1, x^122944 mod p(x)` << 1 */
|
||
|
- .octa 0x000000012e295fa2000000008772a9a8
|
||
|
-
|
||
|
- /* x^121856 mod p(x)` << 1, x^121920 mod p(x)` << 1 */
|
||
|
- .octa 0x000000011d0908bc0000000155f295bc
|
||
|
-
|
||
|
- /* x^120832 mod p(x)` << 1, x^120896 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000193ed97ea00000000595f9282
|
||
|
-
|
||
|
- /* x^119808 mod p(x)` << 1, x^119872 mod p(x)` << 1 */
|
||
|
- .octa 0x000000013a0f1c520000000164b1c25a
|
||
|
-
|
||
|
- /* x^118784 mod p(x)` << 1, x^118848 mod p(x)` << 1 */
|
||
|
- .octa 0x000000010c2c40c000000000fbd67c50
|
||
|
-
|
||
|
- /* x^117760 mod p(x)` << 1, x^117824 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000ff6fac3e0000000096076268
|
||
|
-
|
||
|
- /* x^116736 mod p(x)` << 1, x^116800 mod p(x)` << 1 */
|
||
|
- .octa 0x000000017b3609c000000001d288e4cc
|
||
|
-
|
||
|
- /* x^115712 mod p(x)` << 1, x^115776 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000088c8c92200000001eaac1bdc
|
||
|
-
|
||
|
- /* x^114688 mod p(x)` << 1, x^114752 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001751baae600000001f1ea39e2
|
||
|
-
|
||
|
- /* x^113664 mod p(x)` << 1, x^113728 mod p(x)` << 1 */
|
||
|
- .octa 0x000000010795297200000001eb6506fc
|
||
|
-
|
||
|
- /* x^112640 mod p(x)` << 1, x^112704 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000162b00abe000000010f806ffe
|
||
|
-
|
||
|
- /* x^111616 mod p(x)` << 1, x^111680 mod p(x)` << 1 */
|
||
|
- .octa 0x000000000d7b404c000000010408481e
|
||
|
-
|
||
|
- /* x^110592 mod p(x)` << 1, x^110656 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000763b13d40000000188260534
|
||
|
-
|
||
|
- /* x^109568 mod p(x)` << 1, x^109632 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000f6dc22d80000000058fc73e0
|
||
|
-
|
||
|
- /* x^108544 mod p(x)` << 1, x^108608 mod p(x)` << 1 */
|
||
|
- .octa 0x000000007daae06000000000391c59b8
|
||
|
-
|
||
|
- /* x^107520 mod p(x)` << 1, x^107584 mod p(x)` << 1 */
|
||
|
- .octa 0x000000013359ab7c000000018b638400
|
||
|
-
|
||
|
- /* x^106496 mod p(x)` << 1, x^106560 mod p(x)` << 1 */
|
||
|
- .octa 0x000000008add438a000000011738f5c4
|
||
|
-
|
||
|
- /* x^105472 mod p(x)` << 1, x^105536 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001edbefdea000000008cf7c6da
|
||
|
-
|
||
|
- /* x^104448 mod p(x)` << 1, x^104512 mod p(x)` << 1 */
|
||
|
- .octa 0x000000004104e0f800000001ef97fb16
|
||
|
-
|
||
|
- /* x^103424 mod p(x)` << 1, x^103488 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000b48a82220000000102130e20
|
||
|
-
|
||
|
- /* x^102400 mod p(x)` << 1, x^102464 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001bcb4684400000000db968898
|
||
|
-
|
||
|
- /* x^101376 mod p(x)` << 1, x^101440 mod p(x)` << 1 */
|
||
|
- .octa 0x000000013293ce0a00000000b5047b5e
|
||
|
-
|
||
|
- /* x^100352 mod p(x)` << 1, x^100416 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001710d0844000000010b90fdb2
|
||
|
-
|
||
|
- /* x^99328 mod p(x)` << 1, x^99392 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000117907f6e000000004834a32e
|
||
|
-
|
||
|
- /* x^98304 mod p(x)` << 1, x^98368 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000087ddf93e0000000059c8f2b0
|
||
|
-
|
||
|
- /* x^97280 mod p(x)` << 1, x^97344 mod p(x)` << 1 */
|
||
|
- .octa 0x000000005970e9b00000000122cec508
|
||
|
-
|
||
|
- /* x^96256 mod p(x)` << 1, x^96320 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000185b2b7d0000000000a330cda
|
||
|
-
|
||
|
- /* x^95232 mod p(x)` << 1, x^95296 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001dcee0efc000000014a47148c
|
||
|
-
|
||
|
- /* x^94208 mod p(x)` << 1, x^94272 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000030da27220000000042c61cb8
|
||
|
-
|
||
|
- /* x^93184 mod p(x)` << 1, x^93248 mod p(x)` << 1 */
|
||
|
- .octa 0x000000012f925a180000000012fe6960
|
||
|
-
|
||
|
- /* x^92160 mod p(x)` << 1, x^92224 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000dd2e357c00000000dbda2c20
|
||
|
-
|
||
|
- /* x^91136 mod p(x)` << 1, x^91200 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000071c80de000000011122410c
|
||
|
-
|
||
|
- /* x^90112 mod p(x)` << 1, x^90176 mod p(x)` << 1 */
|
||
|
- .octa 0x000000011513140a00000000977b2070
|
||
|
-
|
||
|
- /* x^89088 mod p(x)` << 1, x^89152 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001df876e8e000000014050438e
|
||
|
-
|
||
|
- /* x^88064 mod p(x)` << 1, x^88128 mod p(x)` << 1 */
|
||
|
- .octa 0x000000015f81d6ce0000000147c840e8
|
||
|
-
|
||
|
- /* x^87040 mod p(x)` << 1, x^87104 mod p(x)` << 1 */
|
||
|
- .octa 0x000000019dd94dbe00000001cc7c88ce
|
||
|
-
|
||
|
- /* x^86016 mod p(x)` << 1, x^86080 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001373d206e00000001476b35a4
|
||
|
-
|
||
|
- /* x^84992 mod p(x)` << 1, x^85056 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000668ccade000000013d52d508
|
||
|
-
|
||
|
- /* x^83968 mod p(x)` << 1, x^84032 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001b192d268000000008e4be32e
|
||
|
-
|
||
|
- /* x^82944 mod p(x)` << 1, x^83008 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000e30f3a7800000000024120fe
|
||
|
-
|
||
|
- /* x^81920 mod p(x)` << 1, x^81984 mod p(x)` << 1 */
|
||
|
- .octa 0x000000010ef1f7bc00000000ddecddb4
|
||
|
-
|
||
|
- /* x^80896 mod p(x)` << 1, x^80960 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001f5ac738000000000d4d403bc
|
||
|
-
|
||
|
- /* x^79872 mod p(x)` << 1, x^79936 mod p(x)` << 1 */
|
||
|
- .octa 0x000000011822ea7000000001734b89aa
|
||
|
-
|
||
|
- /* x^78848 mod p(x)` << 1, x^78912 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000c3a33848000000010e7a58d6
|
||
|
-
|
||
|
- /* x^77824 mod p(x)` << 1, x^77888 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001bd151c2400000001f9f04e9c
|
||
|
-
|
||
|
- /* x^76800 mod p(x)` << 1, x^76864 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000056002d7600000000b692225e
|
||
|
-
|
||
|
- /* x^75776 mod p(x)` << 1, x^75840 mod p(x)` << 1 */
|
||
|
- .octa 0x000000014657c4f4000000019b8d3f3e
|
||
|
-
|
||
|
- /* x^74752 mod p(x)` << 1, x^74816 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000113742d7c00000001a874f11e
|
||
|
-
|
||
|
- /* x^73728 mod p(x)` << 1, x^73792 mod p(x)` << 1 */
|
||
|
- .octa 0x000000019c5920ba000000010d5a4254
|
||
|
-
|
||
|
- /* x^72704 mod p(x)` << 1, x^72768 mod p(x)` << 1 */
|
||
|
- .octa 0x000000005216d2d600000000bbb2f5d6
|
||
|
-
|
||
|
- /* x^71680 mod p(x)` << 1, x^71744 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000136f5ad8a0000000179cc0e36
|
||
|
-
|
||
|
- /* x^70656 mod p(x)` << 1, x^70720 mod p(x)` << 1 */
|
||
|
- .octa 0x000000018b07beb600000001dca1da4a
|
||
|
-
|
||
|
- /* x^69632 mod p(x)` << 1, x^69696 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000db1e93b000000000feb1a192
|
||
|
-
|
||
|
- /* x^68608 mod p(x)` << 1, x^68672 mod p(x)` << 1 */
|
||
|
- .octa 0x000000000b96fa3a00000000d1eeedd6
|
||
|
-
|
||
|
- /* x^67584 mod p(x)` << 1, x^67648 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001d9968af0000000008fad9bb4
|
||
|
-
|
||
|
- /* x^66560 mod p(x)` << 1, x^66624 mod p(x)` << 1 */
|
||
|
- .octa 0x000000000e4a77a200000001884938e4
|
||
|
-
|
||
|
- /* x^65536 mod p(x)` << 1, x^65600 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000508c2ac800000001bc2e9bc0
|
||
|
-
|
||
|
- /* x^64512 mod p(x)` << 1, x^64576 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000021572a8000000001f9658a68
|
||
|
-
|
||
|
- /* x^63488 mod p(x)` << 1, x^63552 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001b859daf2000000001b9224fc
|
||
|
-
|
||
|
- /* x^62464 mod p(x)` << 1, x^62528 mod p(x)` << 1 */
|
||
|
- .octa 0x000000016f7884740000000055b2fb84
|
||
|
-
|
||
|
- /* x^61440 mod p(x)` << 1, x^61504 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001b438810e000000018b090348
|
||
|
-
|
||
|
- /* x^60416 mod p(x)` << 1, x^60480 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000095ddc6f2000000011ccbd5ea
|
||
|
-
|
||
|
- /* x^59392 mod p(x)` << 1, x^59456 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001d977c20c0000000007ae47f8
|
||
|
-
|
||
|
- /* x^58368 mod p(x)` << 1, x^58432 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000ebedb99a0000000172acbec0
|
||
|
-
|
||
|
- /* x^57344 mod p(x)` << 1, x^57408 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001df9e9e9200000001c6e3ff20
|
||
|
-
|
||
|
- /* x^56320 mod p(x)` << 1, x^56384 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001a4a3f95200000000e1b38744
|
||
|
-
|
||
|
- /* x^55296 mod p(x)` << 1, x^55360 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000e2f5122000000000791585b2
|
||
|
-
|
||
|
- /* x^54272 mod p(x)` << 1, x^54336 mod p(x)` << 1 */
|
||
|
- .octa 0x000000004aa01f3e00000000ac53b894
|
||
|
-
|
||
|
- /* x^53248 mod p(x)` << 1, x^53312 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000b3e90a5800000001ed5f2cf4
|
||
|
-
|
||
|
- /* x^52224 mod p(x)` << 1, x^52288 mod p(x)` << 1 */
|
||
|
- .octa 0x000000000c9ca2aa00000001df48b2e0
|
||
|
-
|
||
|
- /* x^51200 mod p(x)` << 1, x^51264 mod p(x)` << 1 */
|
||
|
- .octa 0x000000015168231600000000049c1c62
|
||
|
-
|
||
|
- /* x^50176 mod p(x)` << 1, x^50240 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000036fce78c000000017c460c12
|
||
|
-
|
||
|
- /* x^49152 mod p(x)` << 1, x^49216 mod p(x)` << 1 */
|
||
|
- .octa 0x000000009037dc10000000015be4da7e
|
||
|
-
|
||
|
- /* x^48128 mod p(x)` << 1, x^48192 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000d3298582000000010f38f668
|
||
|
-
|
||
|
- /* x^47104 mod p(x)` << 1, x^47168 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001b42e8ad60000000039f40a00
|
||
|
-
|
||
|
- /* x^46080 mod p(x)` << 1, x^46144 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000142a983800000000bd4c10c4
|
||
|
-
|
||
|
- /* x^45056 mod p(x)` << 1, x^45120 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000109c7f1900000000042db1d98
|
||
|
-
|
||
|
- /* x^44032 mod p(x)` << 1, x^44096 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000056ff931000000001c905bae6
|
||
|
-
|
||
|
- /* x^43008 mod p(x)` << 1, x^43072 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001594513aa00000000069d40ea
|
||
|
-
|
||
|
- /* x^41984 mod p(x)` << 1, x^42048 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001e3b5b1e8000000008e4fbad0
|
||
|
-
|
||
|
- /* x^40960 mod p(x)` << 1, x^41024 mod p(x)` << 1 */
|
||
|
- .octa 0x000000011dd5fc080000000047bedd46
|
||
|
-
|
||
|
- /* x^39936 mod p(x)` << 1, x^40000 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001675f0cc20000000026396bf8
|
||
|
-
|
||
|
- /* x^38912 mod p(x)` << 1, x^38976 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000d1c8dd4400000000379beb92
|
||
|
-
|
||
|
- /* x^37888 mod p(x)` << 1, x^37952 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000115ebd3d8000000000abae54a
|
||
|
-
|
||
|
- /* x^36864 mod p(x)` << 1, x^36928 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001ecbd0dac0000000007e6a128
|
||
|
-
|
||
|
- /* x^35840 mod p(x)` << 1, x^35904 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000cdf67af2000000000ade29d2
|
||
|
-
|
||
|
- /* x^34816 mod p(x)` << 1, x^34880 mod p(x)` << 1 */
|
||
|
- .octa 0x000000004c01ff4c00000000f974c45c
|
||
|
-
|
||
|
- /* x^33792 mod p(x)` << 1, x^33856 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000f2d8657e00000000e77ac60a
|
||
|
-
|
||
|
- /* x^32768 mod p(x)` << 1, x^32832 mod p(x)` << 1 */
|
||
|
- .octa 0x000000006bae74c40000000145895816
|
||
|
-
|
||
|
- /* x^31744 mod p(x)` << 1, x^31808 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000152af8aa00000000038e362be
|
||
|
-
|
||
|
- /* x^30720 mod p(x)` << 1, x^30784 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000004663802000000007f991a64
|
||
|
-
|
||
|
- /* x^29696 mod p(x)` << 1, x^29760 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001ab2f5afc00000000fa366d3a
|
||
|
-
|
||
|
- /* x^28672 mod p(x)` << 1, x^28736 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000074a4ebd400000001a2bb34f0
|
||
|
-
|
||
|
- /* x^27648 mod p(x)` << 1, x^27712 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001d7ab3a4c0000000028a9981e
|
||
|
-
|
||
|
- /* x^26624 mod p(x)` << 1, x^26688 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001a8da60c600000001dbc672be
|
||
|
-
|
||
|
- /* x^25600 mod p(x)` << 1, x^25664 mod p(x)` << 1 */
|
||
|
- .octa 0x000000013cf6382000000000b04d77f6
|
||
|
-
|
||
|
- /* x^24576 mod p(x)` << 1, x^24640 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000bec12e1e0000000124400d96
|
||
|
-
|
||
|
- /* x^23552 mod p(x)` << 1, x^23616 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001c6368010000000014ca4b414
|
||
|
-
|
||
|
- /* x^22528 mod p(x)` << 1, x^22592 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001e6e78758000000012fe2c938
|
||
|
-
|
||
|
- /* x^21504 mod p(x)` << 1, x^21568 mod p(x)` << 1 */
|
||
|
- .octa 0x000000008d7f2b3c00000001faed01e6
|
||
|
-
|
||
|
- /* x^20480 mod p(x)` << 1, x^20544 mod p(x)` << 1 */
|
||
|
- .octa 0x000000016b4a156e000000007e80ecfe
|
||
|
-
|
||
|
- /* x^19456 mod p(x)` << 1, x^19520 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001c63cfeb60000000098daee94
|
||
|
-
|
||
|
- /* x^18432 mod p(x)` << 1, x^18496 mod p(x)` << 1 */
|
||
|
- .octa 0x000000015f902670000000010a04edea
|
||
|
-
|
||
|
- /* x^17408 mod p(x)` << 1, x^17472 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001cd5de11e00000001c00b4524
|
||
|
-
|
||
|
- /* x^16384 mod p(x)` << 1, x^16448 mod p(x)` << 1 */
|
||
|
- .octa 0x000000001acaec540000000170296550
|
||
|
-
|
||
|
- /* x^15360 mod p(x)` << 1, x^15424 mod p(x)` << 1 */
|
||
|
- .octa 0x000000002bd0ca780000000181afaa48
|
||
|
-
|
||
|
- /* x^14336 mod p(x)` << 1, x^14400 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000032d63d5c0000000185a31ffa
|
||
|
-
|
||
|
- /* x^13312 mod p(x)` << 1, x^13376 mod p(x)` << 1 */
|
||
|
- .octa 0x000000001c6d4e4c000000002469f608
|
||
|
-
|
||
|
- /* x^12288 mod p(x)` << 1, x^12352 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000106a60b92000000006980102a
|
||
|
-
|
||
|
- /* x^11264 mod p(x)` << 1, x^11328 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000d3855e120000000111ea9ca8
|
||
|
-
|
||
|
- /* x^10240 mod p(x)` << 1, x^10304 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000e312563600000001bd1d29ce
|
||
|
-
|
||
|
- /* x^9216 mod p(x)` << 1, x^9280 mod p(x)` << 1 */
|
||
|
- .octa 0x000000009e8f7ea400000001b34b9580
|
||
|
-
|
||
|
- /* x^8192 mod p(x)` << 1, x^8256 mod p(x)` << 1 */
|
||
|
- .octa 0x00000001c82e562c000000003076054e
|
||
|
-
|
||
|
- /* x^7168 mod p(x)` << 1, x^7232 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000ca9f09ce000000012a608ea4
|
||
|
-
|
||
|
- /* x^6144 mod p(x)` << 1, x^6208 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000c63764e600000000784d05fe
|
||
|
-
|
||
|
- /* x^5120 mod p(x)` << 1, x^5184 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000168d2e49e000000016ef0d82a
|
||
|
-
|
||
|
- /* x^4096 mod p(x)` << 1, x^4160 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000e986c1480000000075bda454
|
||
|
-
|
||
|
- /* x^3072 mod p(x)` << 1, x^3136 mod p(x)` << 1 */
|
||
|
- .octa 0x00000000cfb65894000000003dc0a1c4
|
||
|
-
|
||
|
- /* x^2048 mod p(x)` << 1, x^2112 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000111cadee400000000e9a5d8be
|
||
|
-
|
||
|
- /* x^1024 mod p(x)` << 1, x^1088 mod p(x)` << 1 */
|
||
|
- .octa 0x0000000171fb63ce00000001609bc4b4
|
||
|
-
|
||
|
- .short_constants :
|
||
|
-
|
||
|
- /* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include
|
||
|
- the trailing 32 bits of zeros */
|
||
|
- /* x^1952 mod p(x)`, x^1984 mod p(x)`, x^2016 mod p(x)`, x^2048 mod
|
||
|
- p(x)` */
|
||
|
- .octa 0x7fec2963e5bf80485cf015c388e56f72
|
||
|
-
|
||
|
- /* x^1824 mod p(x)`, x^1856 mod p(x)`, x^1888 mod p(x)`, x^1920 mod
|
||
|
- p(x)` */
|
||
|
- .octa 0x38e888d4844752a9963a18920246e2e6
|
||
|
-
|
||
|
- /* x^1696 mod p(x)`, x^1728 mod p(x)`, x^1760 mod p(x)`, x^1792 mod
|
||
|
- p(x)` */
|
||
|
- .octa 0x42316c00730206ad419a441956993a31
|
||
|
-
|
||
|
- /* x^1568 mod p(x)`, x^1600 mod p(x)`, x^1632 mod p(x)`, x^1664 mod
|
||
|
- p(x)` */
|
||
|
- .octa 0x543d5c543e65ddf9924752ba2b830011
|
||
|
-
|
||
|
- /* x^1440 mod p(x)`, x^1472 mod p(x)`, x^1504 mod p(x)`, x^1536 mod
|
||
|
- p(x)` */
|
||
|
- .octa 0x78e87aaf56767c9255bd7f9518e4a304
|
||
|
-
|
||
|
- /* x^1312 mod p(x)`, x^1344 mod p(x)`, x^1376 mod p(x)`, x^1408 mod
|
||
|
- p(x)` */
|
||
|
- .octa 0x8f68fcec1903da7f6d76739fe0553f1e
|
||
|
-
|
||
|
- /* x^1184 mod p(x)`, x^1216 mod p(x)`, x^1248 mod p(x)`, x^1280 mod
|
||
|
- p(x)` */
|
||
|
- .octa 0x3f4840246791d588c133722b1fe0b5c3
|
||
|
-
|
||
|
- /* x^1056 mod p(x)`, x^1088 mod p(x)`, x^1120 mod p(x)`, x^1152 mod
|
||
|
- p(x)` */
|
||
|
- .octa 0x34c96751b04de25a64b67ee0e55ef1f3
|
||
|
-
|
||
|
- /* x^928 mod p(x)`, x^960 mod p(x)`, x^992 mod p(x)`, x^1024 mod p(x)`
|
||
|
- */
|
||
|
- .octa 0x156c8e180b4a395b069db049b8fdb1e7
|
||
|
-
|
||
|
- /* x^800 mod p(x)`, x^832 mod p(x)`, x^864 mod p(x)`, x^896 mod p(x)` */
|
||
|
- .octa 0xe0b99ccbe661f7bea11bfaf3c9e90b9e
|
||
|
-
|
||
|
- /* x^672 mod p(x)`, x^704 mod p(x)`, x^736 mod p(x)`, x^768 mod p(x)` */
|
||
|
- .octa 0x041d37768cd75659817cdc5119b29a35
|
||
|
-
|
||
|
- /* x^544 mod p(x)`, x^576 mod p(x)`, x^608 mod p(x)`, x^640 mod p(x)` */
|
||
|
- .octa 0x3a0777818cfaa9651ce9d94b36c41f1c
|
||
|
-
|
||
|
- /* x^416 mod p(x)`, x^448 mod p(x)`, x^480 mod p(x)`, x^512 mod p(x)` */
|
||
|
- .octa 0x0e148e8252377a554f256efcb82be955
|
||
|
-
|
||
|
- /* x^288 mod p(x)`, x^320 mod p(x)`, x^352 mod p(x)`, x^384 mod p(x)` */
|
||
|
- .octa 0x9c25531d19e65ddeec1631edb2dea967
|
||
|
-
|
||
|
- /* x^160 mod p(x)`, x^192 mod p(x)`, x^224 mod p(x)`, x^256 mod p(x)` */
|
||
|
- .octa 0x790606ff9957c0a65d27e147510ac59a
|
||
|
-
|
||
|
- /* x^32 mod p(x)`, x^64 mod p(x)`, x^96 mod p(x)`, x^128 mod p(x)` */
|
||
|
- .octa 0x82f63b786ea2d55ca66805eb18b8ea18
|
||
|
-
|
||
|
- .barrett_constants :
|
||
|
- /* 33 bit reflected Barrett constant m - (4^32)/n */
|
||
|
- .octa 0x000000000000000000000000dea713f1 /* x^64 div p(x)` */
|
||
|
- /* 33 bit reflected Barrett constant n */
|
||
|
- .octa 0x00000000000000000000000105ec76f1
|
||
|
-#endif
|
||
|
+ 0x00000000, 0xf26b8303, 0xe13b70f7, 0x1350f3f4,
|
||
|
+ 0xc79a971f, 0x35f1141c, 0x26a1e7e8, 0xd4ca64eb,
|
||
|
+ 0x8ad958cf, 0x78b2dbcc, 0x6be22838, 0x9989ab3b,
|
||
|
+ 0x4d43cfd0, 0xbf284cd3, 0xac78bf27, 0x5e133c24,
|
||
|
+ 0x105ec76f, 0xe235446c, 0xf165b798, 0x030e349b,
|
||
|
+ 0xd7c45070, 0x25afd373, 0x36ff2087, 0xc494a384,
|
||
|
+ 0x9a879fa0, 0x68ec1ca3, 0x7bbcef57, 0x89d76c54,
|
||
|
+ 0x5d1d08bf, 0xaf768bbc, 0xbc267848, 0x4e4dfb4b,
|
||
|
+ 0x20bd8ede, 0xd2d60ddd, 0xc186fe29, 0x33ed7d2a,
|
||
|
+ 0xe72719c1, 0x154c9ac2, 0x061c6936, 0xf477ea35,
|
||
|
+ 0xaa64d611, 0x580f5512, 0x4b5fa6e6, 0xb93425e5,
|
||
|
+ 0x6dfe410e, 0x9f95c20d, 0x8cc531f9, 0x7eaeb2fa,
|
||
|
+ 0x30e349b1, 0xc288cab2, 0xd1d83946, 0x23b3ba45,
|
||
|
+ 0xf779deae, 0x05125dad, 0x1642ae59, 0xe4292d5a,
|
||
|
+ 0xba3a117e, 0x4851927d, 0x5b016189, 0xa96ae28a,
|
||
|
+ 0x7da08661, 0x8fcb0562, 0x9c9bf696, 0x6ef07595,
|
||
|
+ 0x417b1dbc, 0xb3109ebf, 0xa0406d4b, 0x522bee48,
|
||
|
+ 0x86e18aa3, 0x748a09a0, 0x67dafa54, 0x95b17957,
|
||
|
+ 0xcba24573, 0x39c9c670, 0x2a993584, 0xd8f2b687,
|
||
|
+ 0x0c38d26c, 0xfe53516f, 0xed03a29b, 0x1f682198,
|
||
|
+ 0x5125dad3, 0xa34e59d0, 0xb01eaa24, 0x42752927,
|
||
|
+ 0x96bf4dcc, 0x64d4cecf, 0x77843d3b, 0x85efbe38,
|
||
|
+ 0xdbfc821c, 0x2997011f, 0x3ac7f2eb, 0xc8ac71e8,
|
||
|
+ 0x1c661503, 0xee0d9600, 0xfd5d65f4, 0x0f36e6f7,
|
||
|
+ 0x61c69362, 0x93ad1061, 0x80fde395, 0x72966096,
|
||
|
+ 0xa65c047d, 0x5437877e, 0x4767748a, 0xb50cf789,
|
||
|
+ 0xeb1fcbad, 0x197448ae, 0x0a24bb5a, 0xf84f3859,
|
||
|
+ 0x2c855cb2, 0xdeeedfb1, 0xcdbe2c45, 0x3fd5af46,
|
||
|
+ 0x7198540d, 0x83f3d70e, 0x90a324fa, 0x62c8a7f9,
|
||
|
+ 0xb602c312, 0x44694011, 0x5739b3e5, 0xa55230e6,
|
||
|
+ 0xfb410cc2, 0x092a8fc1, 0x1a7a7c35, 0xe811ff36,
|
||
|
+ 0x3cdb9bdd, 0xceb018de, 0xdde0eb2a, 0x2f8b6829,
|
||
|
+ 0x82f63b78, 0x709db87b, 0x63cd4b8f, 0x91a6c88c,
|
||
|
+ 0x456cac67, 0xb7072f64, 0xa457dc90, 0x563c5f93,
|
||
|
+ 0x082f63b7, 0xfa44e0b4, 0xe9141340, 0x1b7f9043,
|
||
|
+ 0xcfb5f4a8, 0x3dde77ab, 0x2e8e845f, 0xdce5075c,
|
||
|
+ 0x92a8fc17, 0x60c37f14, 0x73938ce0, 0x81f80fe3,
|
||
|
+ 0x55326b08, 0xa759e80b, 0xb4091bff, 0x466298fc,
|
||
|
+ 0x1871a4d8, 0xea1a27db, 0xf94ad42f, 0x0b21572c,
|
||
|
+ 0xdfeb33c7, 0x2d80b0c4, 0x3ed04330, 0xccbbc033,
|
||
|
+ 0xa24bb5a6, 0x502036a5, 0x4370c551, 0xb11b4652,
|
||
|
+ 0x65d122b9, 0x97baa1ba, 0x84ea524e, 0x7681d14d,
|
||
|
+ 0x2892ed69, 0xdaf96e6a, 0xc9a99d9e, 0x3bc21e9d,
|
||
|
+ 0xef087a76, 0x1d63f975, 0x0e330a81, 0xfc588982,
|
||
|
+ 0xb21572c9, 0x407ef1ca, 0x532e023e, 0xa145813d,
|
||
|
+ 0x758fe5d6, 0x87e466d5, 0x94b49521, 0x66df1622,
|
||
|
+ 0x38cc2a06, 0xcaa7a905, 0xd9f75af1, 0x2b9cd9f2,
|
||
|
+ 0xff56bd19, 0x0d3d3e1a, 0x1e6dcdee, 0xec064eed,
|
||
|
+ 0xc38d26c4, 0x31e6a5c7, 0x22b65633, 0xd0ddd530,
|
||
|
+ 0x0417b1db, 0xf67c32d8, 0xe52cc12c, 0x1747422f,
|
||
|
+ 0x49547e0b, 0xbb3ffd08, 0xa86f0efc, 0x5a048dff,
|
||
|
+ 0x8ecee914, 0x7ca56a17, 0x6ff599e3, 0x9d9e1ae0,
|
||
|
+ 0xd3d3e1ab, 0x21b862a8, 0x32e8915c, 0xc083125f,
|
||
|
+ 0x144976b4, 0xe622f5b7, 0xf5720643, 0x07198540,
|
||
|
+ 0x590ab964, 0xab613a67, 0xb831c993, 0x4a5a4a90,
|
||
|
+ 0x9e902e7b, 0x6cfbad78, 0x7fab5e8c, 0x8dc0dd8f,
|
||
|
+ 0xe330a81a, 0x115b2b19, 0x020bd8ed, 0xf0605bee,
|
||
|
+ 0x24aa3f05, 0xd6c1bc06, 0xc5914ff2, 0x37faccf1,
|
||
|
+ 0x69e9f0d5, 0x9b8273d6, 0x88d28022, 0x7ab90321,
|
||
|
+ 0xae7367ca, 0x5c18e4c9, 0x4f48173d, 0xbd23943e,
|
||
|
+ 0xf36e6f75, 0x0105ec76, 0x12551f82, 0xe03e9c81,
|
||
|
+ 0x34f4f86a, 0xc69f7b69, 0xd5cf889d, 0x27a40b9e,
|
||
|
+ 0x79b737ba, 0x8bdcb4b9, 0x988c474d, 0x6ae7c44e,
|
||
|
+ 0xbe2da0a5, 0x4c4623a6, 0x5f16d052, 0xad7d5351,};
|
||
|
+
|
||
|
+#endif /* CRC_TABLE */
|
||
|
+#ifdef POWER8_INTRINSICS
|
||
|
+
|
||
|
+/* Constants */
|
||
|
+
|
||
|
+/* Reduce 262144 kbits to 1024 bits */
|
||
|
+static const __vector unsigned long long vcrc_const[255]
|
||
|
+ __attribute__((aligned (16))) = {
|
||
|
+#ifdef __LITTLE_ENDIAN__
|
||
|
+ /* x^261120 mod p(x)` << 1, x^261184 mod p(x)` << 1 */
|
||
|
+ { 0x000000009c37c408, 0x00000000b6ca9e20 },
|
||
|
+ /* x^260096 mod p(x)` << 1, x^260160 mod p(x)` << 1 */
|
||
|
+ { 0x00000001b51df26c, 0x00000000350249a8 },
|
||
|
+ /* x^259072 mod p(x)` << 1, x^259136 mod p(x)` << 1 */
|
||
|
+ { 0x000000000724b9d0, 0x00000001862dac54 },
|
||
|
+ /* x^258048 mod p(x)` << 1, x^258112 mod p(x)` << 1 */
|
||
|
+ { 0x00000001c00532fe, 0x00000001d87fb48c },
|
||
|
+ /* x^257024 mod p(x)` << 1, x^257088 mod p(x)` << 1 */
|
||
|
+ { 0x00000000f05a9362, 0x00000001f39b699e },
|
||
|
+ /* x^256000 mod p(x)` << 1, x^256064 mod p(x)` << 1 */
|
||
|
+ { 0x00000001e1007970, 0x0000000101da11b4 },
|
||
|
+ /* x^254976 mod p(x)` << 1, x^255040 mod p(x)` << 1 */
|
||
|
+ { 0x00000000a57366ee, 0x00000001cab571e0 },
|
||
|
+ /* x^253952 mod p(x)` << 1, x^254016 mod p(x)` << 1 */
|
||
|
+ { 0x0000000192011284, 0x00000000c7020cfe },
|
||
|
+ /* x^252928 mod p(x)` << 1, x^252992 mod p(x)` << 1 */
|
||
|
+ { 0x0000000162716d9a, 0x00000000cdaed1ae },
|
||
|
+ /* x^251904 mod p(x)` << 1, x^251968 mod p(x)` << 1 */
|
||
|
+ { 0x00000000cd97ecde, 0x00000001e804effc },
|
||
|
+ /* x^250880 mod p(x)` << 1, x^250944 mod p(x)` << 1 */
|
||
|
+ { 0x0000000058812bc0, 0x0000000077c3ea3a },
|
||
|
+ /* x^249856 mod p(x)` << 1, x^249920 mod p(x)` << 1 */
|
||
|
+ { 0x0000000088b8c12e, 0x0000000068df31b4 },
|
||
|
+ /* x^248832 mod p(x)` << 1, x^248896 mod p(x)` << 1 */
|
||
|
+ { 0x00000001230b234c, 0x00000000b059b6c2 },
|
||
|
+ /* x^247808 mod p(x)` << 1, x^247872 mod p(x)` << 1 */
|
||
|
+ { 0x00000001120b416e, 0x0000000145fb8ed8 },
|
||
|
+ /* x^246784 mod p(x)` << 1, x^246848 mod p(x)` << 1 */
|
||
|
+ { 0x00000001974aecb0, 0x00000000cbc09168 },
|
||
|
+ /* x^245760 mod p(x)` << 1, x^245824 mod p(x)` << 1 */
|
||
|
+ { 0x000000008ee3f226, 0x000000005ceeedc2 },
|
||
|
+ /* x^244736 mod p(x)` << 1, x^244800 mod p(x)` << 1 */
|
||
|
+ { 0x00000001089aba9a, 0x0000000047d74e86 },
|
||
|
+ /* x^243712 mod p(x)` << 1, x^243776 mod p(x)` << 1 */
|
||
|
+ { 0x0000000065113872, 0x00000001407e9e22 },
|
||
|
+ /* x^242688 mod p(x)` << 1, x^242752 mod p(x)` << 1 */
|
||
|
+ { 0x000000005c07ec10, 0x00000001da967bda },
|
||
|
+ /* x^241664 mod p(x)` << 1, x^241728 mod p(x)` << 1 */
|
||
|
+ { 0x0000000187590924, 0x000000006c898368 },
|
||
|
+ /* x^240640 mod p(x)` << 1, x^240704 mod p(x)` << 1 */
|
||
|
+ { 0x00000000e35da7c6, 0x00000000f2d14c98 },
|
||
|
+ /* x^239616 mod p(x)` << 1, x^239680 mod p(x)` << 1 */
|
||
|
+ { 0x000000000415855a, 0x00000001993c6ad4 },
|
||
|
+ /* x^238592 mod p(x)` << 1, x^238656 mod p(x)` << 1 */
|
||
|
+ { 0x0000000073617758, 0x000000014683d1ac },
|
||
|
+ /* x^237568 mod p(x)` << 1, x^237632 mod p(x)` << 1 */
|
||
|
+ { 0x0000000176021d28, 0x00000001a7c93e6c },
|
||
|
+ /* x^236544 mod p(x)` << 1, x^236608 mod p(x)` << 1 */
|
||
|
+ { 0x00000001c358fd0a, 0x000000010211e90a },
|
||
|
+ /* x^235520 mod p(x)` << 1, x^235584 mod p(x)` << 1 */
|
||
|
+ { 0x00000001ff7a2c18, 0x000000001119403e },
|
||
|
+ /* x^234496 mod p(x)` << 1, x^234560 mod p(x)` << 1 */
|
||
|
+ { 0x00000000f2d9f7e4, 0x000000001c3261aa },
|
||
|
+ /* x^233472 mod p(x)` << 1, x^233536 mod p(x)` << 1 */
|
||
|
+ { 0x000000016cf1f9c8, 0x000000014e37a634 },
|
||
|
+ /* x^232448 mod p(x)` << 1, x^232512 mod p(x)` << 1 */
|
||
|
+ { 0x000000010af9279a, 0x0000000073786c0c },
|
||
|
+ /* x^231424 mod p(x)` << 1, x^231488 mod p(x)` << 1 */
|
||
|
+ { 0x0000000004f101e8, 0x000000011dc037f8 },
|
||
|
+ /* x^230400 mod p(x)` << 1, x^230464 mod p(x)` << 1 */
|
||
|
+ { 0x0000000070bcf184, 0x0000000031433dfc },
|
||
|
+ /* x^229376 mod p(x)` << 1, x^229440 mod p(x)` << 1 */
|
||
|
+ { 0x000000000a8de642, 0x000000009cde8348 },
|
||
|
+ /* x^228352 mod p(x)` << 1, x^228416 mod p(x)` << 1 */
|
||
|
+ { 0x0000000062ea130c, 0x0000000038d3c2a6 },
|
||
|
+ /* x^227328 mod p(x)` << 1, x^227392 mod p(x)` << 1 */
|
||
|
+ { 0x00000001eb31cbb2, 0x000000011b25f260 },
|
||
|
+ /* x^226304 mod p(x)` << 1, x^226368 mod p(x)` << 1 */
|
||
|
+ { 0x0000000170783448, 0x000000001629e6f0 },
|
||
|
+ /* x^225280 mod p(x)` << 1, x^225344 mod p(x)` << 1 */
|
||
|
+ { 0x00000001a684b4c6, 0x0000000160838b4c },
|
||
|
+ /* x^224256 mod p(x)` << 1, x^224320 mod p(x)` << 1 */
|
||
|
+ { 0x00000000253ca5b4, 0x000000007a44011c },
|
||
|
+ /* x^223232 mod p(x)` << 1, x^223296 mod p(x)` << 1 */
|
||
|
+ { 0x0000000057b4b1e2, 0x00000000226f417a },
|
||
|
+ /* x^222208 mod p(x)` << 1, x^222272 mod p(x)` << 1 */
|
||
|
+ { 0x00000000b6bd084c, 0x0000000045eb2eb4 },
|
||
|
+ /* x^221184 mod p(x)` << 1, x^221248 mod p(x)` << 1 */
|
||
|
+ { 0x0000000123c2d592, 0x000000014459d70c },
|
||
|
+ /* x^220160 mod p(x)` << 1, x^220224 mod p(x)` << 1 */
|
||
|
+ { 0x00000000159dafce, 0x00000001d406ed82 },
|
||
|
+ /* x^219136 mod p(x)` << 1, x^219200 mod p(x)` << 1 */
|
||
|
+ { 0x0000000127e1a64e, 0x0000000160c8e1a8 },
|
||
|
+ /* x^218112 mod p(x)` << 1, x^218176 mod p(x)` << 1 */
|
||
|
+ { 0x0000000056860754, 0x0000000027ba8098 },
|
||
|
+ /* x^217088 mod p(x)` << 1, x^217152 mod p(x)` << 1 */
|
||
|
+ { 0x00000001e661aae8, 0x000000006d92d018 },
|
||
|
+ /* x^216064 mod p(x)` << 1, x^216128 mod p(x)` << 1 */
|
||
|
+ { 0x00000000f82c6166, 0x000000012ed7e3f2 },
|
||
|
+ /* x^215040 mod p(x)` << 1, x^215104 mod p(x)` << 1 */
|
||
|
+ { 0x00000000c4f9c7ae, 0x000000002dc87788 },
|
||
|
+ /* x^214016 mod p(x)` << 1, x^214080 mod p(x)` << 1 */
|
||
|
+ { 0x0000000074203d20, 0x0000000018240bb8 },
|
||
|
+ /* x^212992 mod p(x)` << 1, x^213056 mod p(x)` << 1 */
|
||
|
+ { 0x0000000198173052, 0x000000001ad38158 },
|
||
|
+ /* x^211968 mod p(x)` << 1, x^212032 mod p(x)` << 1 */
|
||
|
+ { 0x00000001ce8aba54, 0x00000001396b78f2 },
|
||
|
+ /* x^210944 mod p(x)` << 1, x^211008 mod p(x)` << 1 */
|
||
|
+ { 0x00000001850d5d94, 0x000000011a681334 },
|
||
|
+ /* x^209920 mod p(x)` << 1, x^209984 mod p(x)` << 1 */
|
||
|
+ { 0x00000001d609239c, 0x000000012104732e },
|
||
|
+ /* x^208896 mod p(x)` << 1, x^208960 mod p(x)` << 1 */
|
||
|
+ { 0x000000001595f048, 0x00000000a140d90c },
|
||
|
+ /* x^207872 mod p(x)` << 1, x^207936 mod p(x)` << 1 */
|
||
|
+ { 0x0000000042ccee08, 0x00000001b7215eda },
|
||
|
+ /* x^206848 mod p(x)` << 1, x^206912 mod p(x)` << 1 */
|
||
|
+ { 0x000000010a389d74, 0x00000001aaf1df3c },
|
||
|
+ /* x^205824 mod p(x)` << 1, x^205888 mod p(x)` << 1 */
|
||
|
+ { 0x000000012a840da6, 0x0000000029d15b8a },
|
||
|
+ /* x^204800 mod p(x)` << 1, x^204864 mod p(x)` << 1 */
|
||
|
+ { 0x000000001d181c0c, 0x00000000f1a96922 },
|
||
|
+ /* x^203776 mod p(x)` << 1, x^203840 mod p(x)` << 1 */
|
||
|
+ { 0x0000000068b7d1f6, 0x00000001ac80d03c },
|
||
|
+ /* x^202752 mod p(x)` << 1, x^202816 mod p(x)` << 1 */
|
||
|
+ { 0x000000005b0f14fc, 0x000000000f11d56a },
|
||
|
+ /* x^201728 mod p(x)` << 1, x^201792 mod p(x)` << 1 */
|
||
|
+ { 0x0000000179e9e730, 0x00000001f1c022a2 },
|
||
|
+ /* x^200704 mod p(x)` << 1, x^200768 mod p(x)` << 1 */
|
||
|
+ { 0x00000001ce1368d6, 0x0000000173d00ae2 },
|
||
|
+ /* x^199680 mod p(x)` << 1, x^199744 mod p(x)` << 1 */
|
||
|
+ { 0x0000000112c3a84c, 0x00000001d4ffe4ac },
|
||
|
+ /* x^198656 mod p(x)` << 1, x^198720 mod p(x)` << 1 */
|
||
|
+ { 0x00000000de940fee, 0x000000016edc5ae4 },
|
||
|
+ /* x^197632 mod p(x)` << 1, x^197696 mod p(x)` << 1 */
|
||
|
+ { 0x00000000fe896b7e, 0x00000001f1a02140 },
|
||
|
+ /* x^196608 mod p(x)` << 1, x^196672 mod p(x)` << 1 */
|
||
|
+ { 0x00000001f797431c, 0x00000000ca0b28a0 },
|
||
|
+ /* x^195584 mod p(x)` << 1, x^195648 mod p(x)` << 1 */
|
||
|
+ { 0x0000000053e989ba, 0x00000001928e30a2 },
|
||
|
+ /* x^194560 mod p(x)` << 1, x^194624 mod p(x)` << 1 */
|
||
|
+ { 0x000000003920cd16, 0x0000000097b1b002 },
|
||
|
+ /* x^193536 mod p(x)` << 1, x^193600 mod p(x)` << 1 */
|
||
|
+ { 0x00000001e6f579b8, 0x00000000b15bf906 },
|
||
|
+ /* x^192512 mod p(x)` << 1, x^192576 mod p(x)` << 1 */
|
||
|
+ { 0x000000007493cb0a, 0x00000000411c5d52 },
|
||
|
+ /* x^191488 mod p(x)` << 1, x^191552 mod p(x)` << 1 */
|
||
|
+ { 0x00000001bdd376d8, 0x00000001c36f3300 },
|
||
|
+ /* x^190464 mod p(x)` << 1, x^190528 mod p(x)` << 1 */
|
||
|
+ { 0x000000016badfee6, 0x00000001119227e0 },
|
||
|
+ /* x^189440 mod p(x)` << 1, x^189504 mod p(x)` << 1 */
|
||
|
+ { 0x0000000071de5c58, 0x00000000114d4702 },
|
||
|
+ /* x^188416 mod p(x)` << 1, x^188480 mod p(x)` << 1 */
|
||
|
+ { 0x00000000453f317c, 0x00000000458b5b98 },
|
||
|
+ /* x^187392 mod p(x)` << 1, x^187456 mod p(x)` << 1 */
|
||
|
+ { 0x0000000121675cce, 0x000000012e31fb8e },
|
||
|
+ /* x^186368 mod p(x)` << 1, x^186432 mod p(x)` << 1 */
|
||
|
+ { 0x00000001f409ee92, 0x000000005cf619d8 },
|
||
|
+ /* x^185344 mod p(x)` << 1, x^185408 mod p(x)` << 1 */
|
||
|
+ { 0x00000000f36b9c88, 0x0000000063f4d8b2 },
|
||
|
+ /* x^184320 mod p(x)` << 1, x^184384 mod p(x)` << 1 */
|
||
|
+ { 0x0000000036b398f4, 0x000000004138dc8a },
|
||
|
+ /* x^183296 mod p(x)` << 1, x^183360 mod p(x)` << 1 */
|
||
|
+ { 0x00000001748f9adc, 0x00000001d29ee8e0 },
|
||
|
+ /* x^182272 mod p(x)` << 1, x^182336 mod p(x)` << 1 */
|
||
|
+ { 0x00000001be94ec00, 0x000000006a08ace8 },
|
||
|
+ /* x^181248 mod p(x)` << 1, x^181312 mod p(x)` << 1 */
|
||
|
+ { 0x00000000b74370d6, 0x0000000127d42010 },
|
||
|
+ /* x^180224 mod p(x)` << 1, x^180288 mod p(x)` << 1 */
|
||
|
+ { 0x00000001174d0b98, 0x0000000019d76b62 },
|
||
|
+ /* x^179200 mod p(x)` << 1, x^179264 mod p(x)` << 1 */
|
||
|
+ { 0x00000000befc06a4, 0x00000001b1471f6e },
|
||
|
+ /* x^178176 mod p(x)` << 1, x^178240 mod p(x)` << 1 */
|
||
|
+ { 0x00000001ae125288, 0x00000001f64c19cc },
|
||
|
+ /* x^177152 mod p(x)` << 1, x^177216 mod p(x)` << 1 */
|
||
|
+ { 0x0000000095c19b34, 0x00000000003c0ea0 },
|
||
|
+ /* x^176128 mod p(x)` << 1, x^176192 mod p(x)` << 1 */
|
||
|
+ { 0x00000001a78496f2, 0x000000014d73abf6 },
|
||
|
+ /* x^175104 mod p(x)` << 1, x^175168 mod p(x)` << 1 */
|
||
|
+ { 0x00000001ac5390a0, 0x00000001620eb844 },
|
||
|
+ /* x^174080 mod p(x)` << 1, x^174144 mod p(x)` << 1 */
|
||
|
+ { 0x000000002a80ed6e, 0x0000000147655048 },
|
||
|
+ /* x^173056 mod p(x)` << 1, x^173120 mod p(x)` << 1 */
|
||
|
+ { 0x00000001fa9b0128, 0x0000000067b5077e },
|
||
|
+ /* x^172032 mod p(x)` << 1, x^172096 mod p(x)` << 1 */
|
||
|
+ { 0x00000001ea94929e, 0x0000000010ffe206 },
|
||
|
+ /* x^171008 mod p(x)` << 1, x^171072 mod p(x)` << 1 */
|
||
|
+ { 0x0000000125f4305c, 0x000000000fee8f1e },
|
||
|
+ /* x^169984 mod p(x)` << 1, x^170048 mod p(x)` << 1 */
|
||
|
+ { 0x00000001471e2002, 0x00000001da26fbae },
|
||
|
+ /* x^168960 mod p(x)` << 1, x^169024 mod p(x)` << 1 */
|
||
|
+ { 0x0000000132d2253a, 0x00000001b3a8bd88 },
|
||
|
+ /* x^167936 mod p(x)` << 1, x^168000 mod p(x)` << 1 */
|
||
|
+ { 0x00000000f26b3592, 0x00000000e8f3898e },
|
||
|
+ /* x^166912 mod p(x)` << 1, x^166976 mod p(x)` << 1 */
|
||
|
+ { 0x00000000bc8b67b0, 0x00000000b0d0d28c },
|
||
|
+ /* x^165888 mod p(x)` << 1, x^165952 mod p(x)` << 1 */
|
||
|
+ { 0x000000013a826ef2, 0x0000000030f2a798 },
|
||
|
+ /* x^164864 mod p(x)` << 1, x^164928 mod p(x)` << 1 */
|
||
|
+ { 0x0000000081482c84, 0x000000000fba1002 },
|
||
|
+ /* x^163840 mod p(x)` << 1, x^163904 mod p(x)` << 1 */
|
||
|
+ { 0x00000000e77307c2, 0x00000000bdb9bd72 },
|
||
|
+ /* x^162816 mod p(x)` << 1, x^162880 mod p(x)` << 1 */
|
||
|
+ { 0x00000000d4a07ec8, 0x0000000075d3bf5a },
|
||
|
+ /* x^161792 mod p(x)` << 1, x^161856 mod p(x)` << 1 */
|
||
|
+ { 0x0000000017102100, 0x00000000ef1f98a0 },
|
||
|
+ /* x^160768 mod p(x)` << 1, x^160832 mod p(x)` << 1 */
|
||
|
+ { 0x00000000db406486, 0x00000000689c7602 },
|
||
|
+ /* x^159744 mod p(x)` << 1, x^159808 mod p(x)` << 1 */
|
||
|
+ { 0x0000000192db7f88, 0x000000016d5fa5fe },
|
||
|
+ /* x^158720 mod p(x)` << 1, x^158784 mod p(x)` << 1 */
|
||
|
+ { 0x000000018bf67b1e, 0x00000001d0d2b9ca },
|
||
|
+ /* x^157696 mod p(x)` << 1, x^157760 mod p(x)` << 1 */
|
||
|
+ { 0x000000007c09163e, 0x0000000041e7b470 },
|
||
|
+ /* x^156672 mod p(x)` << 1, x^156736 mod p(x)` << 1 */
|
||
|
+ { 0x000000000adac060, 0x00000001cbb6495e },
|
||
|
+ /* x^155648 mod p(x)` << 1, x^155712 mod p(x)` << 1 */
|
||
|
+ { 0x00000000bd8316ae, 0x000000010052a0b0 },
|
||
|
+ /* x^154624 mod p(x)` << 1, x^154688 mod p(x)` << 1 */
|
||
|
+ { 0x000000019f09ab54, 0x00000001d8effb5c },
|
||
|
+ /* x^153600 mod p(x)` << 1, x^153664 mod p(x)` << 1 */
|
||
|
+ { 0x0000000125155542, 0x00000001d969853c },
|
||
|
+ /* x^152576 mod p(x)` << 1, x^152640 mod p(x)` << 1 */
|
||
|
+ { 0x000000018fdb5882, 0x00000000523ccce2 },
|
||
|
+ /* x^151552 mod p(x)` << 1, x^151616 mod p(x)` << 1 */
|
||
|
+ { 0x00000000e794b3f4, 0x000000001e2436bc },
|
||
|
+ /* x^150528 mod p(x)` << 1, x^150592 mod p(x)` << 1 */
|
||
|
+ { 0x000000016f9bb022, 0x00000000ddd1c3a2 },
|
||
|
+ /* x^149504 mod p(x)` << 1, x^149568 mod p(x)` << 1 */
|
||
|
+ { 0x00000000290c9978, 0x0000000019fcfe38 },
|
||
|
+ /* x^148480 mod p(x)` << 1, x^148544 mod p(x)` << 1 */
|
||
|
+ { 0x0000000083c0f350, 0x00000001ce95db64 },
|
||
|
+ /* x^147456 mod p(x)` << 1, x^147520 mod p(x)` << 1 */
|
||
|
+ { 0x0000000173ea6628, 0x00000000af582806 },
|
||
|
+ /* x^146432 mod p(x)` << 1, x^146496 mod p(x)` << 1 */
|
||
|
+ { 0x00000001c8b4e00a, 0x00000001006388f6 },
|
||
|
+ /* x^145408 mod p(x)` << 1, x^145472 mod p(x)` << 1 */
|
||
|
+ { 0x00000000de95d6aa, 0x0000000179eca00a },
|
||
|
+ /* x^144384 mod p(x)` << 1, x^144448 mod p(x)` << 1 */
|
||
|
+ { 0x000000010b7f7248, 0x0000000122410a6a },
|
||
|
+ /* x^143360 mod p(x)` << 1, x^143424 mod p(x)` << 1 */
|
||
|
+ { 0x00000001326e3a06, 0x000000004288e87c },
|
||
|
+ /* x^142336 mod p(x)` << 1, x^142400 mod p(x)` << 1 */
|
||
|
+ { 0x00000000bb62c2e6, 0x000000016c5490da },
|
||
|
+ /* x^141312 mod p(x)` << 1, x^141376 mod p(x)` << 1 */
|
||
|
+ { 0x0000000156a4b2c2, 0x00000000d1c71f6e },
|
||
|
+ /* x^140288 mod p(x)` << 1, x^140352 mod p(x)` << 1 */
|
||
|
+ { 0x000000011dfe763a, 0x00000001b4ce08a6 },
|
||
|
+ /* x^139264 mod p(x)` << 1, x^139328 mod p(x)` << 1 */
|
||
|
+ { 0x000000007bcca8e2, 0x00000001466ba60c },
|
||
|
+ /* x^138240 mod p(x)` << 1, x^138304 mod p(x)` << 1 */
|
||
|
+ { 0x0000000186118faa, 0x00000001f6c488a4 },
|
||
|
+ /* x^137216 mod p(x)` << 1, x^137280 mod p(x)` << 1 */
|
||
|
+ { 0x0000000111a65a88, 0x000000013bfb0682 },
|
||
|
+ /* x^136192 mod p(x)` << 1, x^136256 mod p(x)` << 1 */
|
||
|
+ { 0x000000003565e1c4, 0x00000000690e9e54 },
|
||
|
+ /* x^135168 mod p(x)` << 1, x^135232 mod p(x)` << 1 */
|
||
|
+ { 0x000000012ed02a82, 0x00000000281346b6 },
|
||
|
+ /* x^134144 mod p(x)` << 1, x^134208 mod p(x)` << 1 */
|
||
|
+ { 0x00000000c486ecfc, 0x0000000156464024 },
|
||
|
+ /* x^133120 mod p(x)` << 1, x^133184 mod p(x)` << 1 */
|
||
|
+ { 0x0000000001b951b2, 0x000000016063a8dc },
|
||
|
+ /* x^132096 mod p(x)` << 1, x^132160 mod p(x)` << 1 */
|
||
|
+ { 0x0000000048143916, 0x0000000116a66362 },
|
||
|
+ /* x^131072 mod p(x)` << 1, x^131136 mod p(x)` << 1 */
|
||
|
+ { 0x00000001dc2ae124, 0x000000017e8aa4d2 },
|
||
|
+ /* x^130048 mod p(x)` << 1, x^130112 mod p(x)` << 1 */
|
||
|
+ { 0x00000001416c58d6, 0x00000001728eb10c },
|
||
|
+ /* x^129024 mod p(x)` << 1, x^129088 mod p(x)` << 1 */
|
||
|
+ { 0x00000000a479744a, 0x00000001b08fd7fa },
|
||
|
+ /* x^128000 mod p(x)` << 1, x^128064 mod p(x)` << 1 */
|
||
|
+ { 0x0000000096ca3a26, 0x00000001092a16e8 },
|
||
|
+ /* x^126976 mod p(x)` << 1, x^127040 mod p(x)` << 1 */
|
||
|
+ { 0x00000000ff223d4e, 0x00000000a505637c },
|
||
|
+ /* x^125952 mod p(x)` << 1, x^126016 mod p(x)` << 1 */
|
||
|
+ { 0x000000010e84da42, 0x00000000d94869b2 },
|
||
|
+ /* x^124928 mod p(x)` << 1, x^124992 mod p(x)` << 1 */
|
||
|
+ { 0x00000001b61ba3d0, 0x00000001c8b203ae },
|
||
|
+ /* x^123904 mod p(x)` << 1, x^123968 mod p(x)` << 1 */
|
||
|
+ { 0x00000000680f2de8, 0x000000005704aea0 },
|
||
|
+ /* x^122880 mod p(x)` << 1, x^122944 mod p(x)` << 1 */
|
||
|
+ { 0x000000008772a9a8, 0x000000012e295fa2 },
|
||
|
+ /* x^121856 mod p(x)` << 1, x^121920 mod p(x)` << 1 */
|
||
|
+ { 0x0000000155f295bc, 0x000000011d0908bc },
|
||
|
+ /* x^120832 mod p(x)` << 1, x^120896 mod p(x)` << 1 */
|
||
|
+ { 0x00000000595f9282, 0x0000000193ed97ea },
|
||
|
+ /* x^119808 mod p(x)` << 1, x^119872 mod p(x)` << 1 */
|
||
|
+ { 0x0000000164b1c25a, 0x000000013a0f1c52 },
|
||
|
+ /* x^118784 mod p(x)` << 1, x^118848 mod p(x)` << 1 */
|
||
|
+ { 0x00000000fbd67c50, 0x000000010c2c40c0 },
|
||
|
+ /* x^117760 mod p(x)` << 1, x^117824 mod p(x)` << 1 */
|
||
|
+ { 0x0000000096076268, 0x00000000ff6fac3e },
|
||
|
+ /* x^116736 mod p(x)` << 1, x^116800 mod p(x)` << 1 */
|
||
|
+ { 0x00000001d288e4cc, 0x000000017b3609c0 },
|
||
|
+ /* x^115712 mod p(x)` << 1, x^115776 mod p(x)` << 1 */
|
||
|
+ { 0x00000001eaac1bdc, 0x0000000088c8c922 },
|
||
|
+ /* x^114688 mod p(x)` << 1, x^114752 mod p(x)` << 1 */
|
||
|
+ { 0x00000001f1ea39e2, 0x00000001751baae6 },
|
||
|
+ /* x^113664 mod p(x)` << 1, x^113728 mod p(x)` << 1 */
|
||
|
+ { 0x00000001eb6506fc, 0x0000000107952972 },
|
||
|
+ /* x^112640 mod p(x)` << 1, x^112704 mod p(x)` << 1 */
|
||
|
+ { 0x000000010f806ffe, 0x0000000162b00abe },
|
||
|
+ /* x^111616 mod p(x)` << 1, x^111680 mod p(x)` << 1 */
|
||
|
+ { 0x000000010408481e, 0x000000000d7b404c },
|
||
|
+ /* x^110592 mod p(x)` << 1, x^110656 mod p(x)` << 1 */
|
||
|
+ { 0x0000000188260534, 0x00000000763b13d4 },
|
||
|
+ /* x^109568 mod p(x)` << 1, x^109632 mod p(x)` << 1 */
|
||
|
+ { 0x0000000058fc73e0, 0x00000000f6dc22d8 },
|
||
|
+ /* x^108544 mod p(x)` << 1, x^108608 mod p(x)` << 1 */
|
||
|
+ { 0x00000000391c59b8, 0x000000007daae060 },
|
||
|
+ /* x^107520 mod p(x)` << 1, x^107584 mod p(x)` << 1 */
|
||
|
+ { 0x000000018b638400, 0x000000013359ab7c },
|
||
|
+ /* x^106496 mod p(x)` << 1, x^106560 mod p(x)` << 1 */
|
||
|
+ { 0x000000011738f5c4, 0x000000008add438a },
|
||
|
+ /* x^105472 mod p(x)` << 1, x^105536 mod p(x)` << 1 */
|
||
|
+ { 0x000000008cf7c6da, 0x00000001edbefdea },
|
||
|
+ /* x^104448 mod p(x)` << 1, x^104512 mod p(x)` << 1 */
|
||
|
+ { 0x00000001ef97fb16, 0x000000004104e0f8 },
|
||
|
+ /* x^103424 mod p(x)` << 1, x^103488 mod p(x)` << 1 */
|
||
|
+ { 0x0000000102130e20, 0x00000000b48a8222 },
|
||
|
+ /* x^102400 mod p(x)` << 1, x^102464 mod p(x)` << 1 */
|
||
|
+ { 0x00000000db968898, 0x00000001bcb46844 },
|
||
|
+ /* x^101376 mod p(x)` << 1, x^101440 mod p(x)` << 1 */
|
||
|
+ { 0x00000000b5047b5e, 0x000000013293ce0a },
|
||
|
+ /* x^100352 mod p(x)` << 1, x^100416 mod p(x)` << 1 */
|
||
|
+ { 0x000000010b90fdb2, 0x00000001710d0844 },
|
||
|
+ /* x^99328 mod p(x)` << 1, x^99392 mod p(x)` << 1 */
|
||
|
+ { 0x000000004834a32e, 0x0000000117907f6e },
|
||
|
+ /* x^98304 mod p(x)` << 1, x^98368 mod p(x)` << 1 */
|
||
|
+ { 0x0000000059c8f2b0, 0x0000000087ddf93e },
|
||
|
+ /* x^97280 mod p(x)` << 1, x^97344 mod p(x)` << 1 */
|
||
|
+ { 0x0000000122cec508, 0x000000005970e9b0 },
|
||
|
+ /* x^96256 mod p(x)` << 1, x^96320 mod p(x)` << 1 */
|
||
|
+ { 0x000000000a330cda, 0x0000000185b2b7d0 },
|
||
|
+ /* x^95232 mod p(x)` << 1, x^95296 mod p(x)` << 1 */
|
||
|
+ { 0x000000014a47148c, 0x00000001dcee0efc },
|
||
|
+ /* x^94208 mod p(x)` << 1, x^94272 mod p(x)` << 1 */
|
||
|
+ { 0x0000000042c61cb8, 0x0000000030da2722 },
|
||
|
+ /* x^93184 mod p(x)` << 1, x^93248 mod p(x)` << 1 */
|
||
|
+ { 0x0000000012fe6960, 0x000000012f925a18 },
|
||
|
+ /* x^92160 mod p(x)` << 1, x^92224 mod p(x)` << 1 */
|
||
|
+ { 0x00000000dbda2c20, 0x00000000dd2e357c },
|
||
|
+ /* x^91136 mod p(x)` << 1, x^91200 mod p(x)` << 1 */
|
||
|
+ { 0x000000011122410c, 0x00000000071c80de },
|
||
|
+ /* x^90112 mod p(x)` << 1, x^90176 mod p(x)` << 1 */
|
||
|
+ { 0x00000000977b2070, 0x000000011513140a },
|
||
|
+ /* x^89088 mod p(x)` << 1, x^89152 mod p(x)` << 1 */
|
||
|
+ { 0x000000014050438e, 0x00000001df876e8e },
|
||
|
+ /* x^88064 mod p(x)` << 1, x^88128 mod p(x)` << 1 */
|
||
|
+ { 0x0000000147c840e8, 0x000000015f81d6ce },
|
||
|
+ /* x^87040 mod p(x)` << 1, x^87104 mod p(x)` << 1 */
|
||
|
+ { 0x00000001cc7c88ce, 0x000000019dd94dbe },
|
||
|
+ /* x^86016 mod p(x)` << 1, x^86080 mod p(x)` << 1 */
|
||
|
+ { 0x00000001476b35a4, 0x00000001373d206e },
|
||
|
+ /* x^84992 mod p(x)` << 1, x^85056 mod p(x)` << 1 */
|
||
|
+ { 0x000000013d52d508, 0x00000000668ccade },
|
||
|
+ /* x^83968 mod p(x)` << 1, x^84032 mod p(x)` << 1 */
|
||
|
+ { 0x000000008e4be32e, 0x00000001b192d268 },
|
||
|
+ /* x^82944 mod p(x)` << 1, x^83008 mod p(x)` << 1 */
|
||
|
+ { 0x00000000024120fe, 0x00000000e30f3a78 },
|
||
|
+ /* x^81920 mod p(x)` << 1, x^81984 mod p(x)` << 1 */
|
||
|
+ { 0x00000000ddecddb4, 0x000000010ef1f7bc },
|
||
|
+ /* x^80896 mod p(x)` << 1, x^80960 mod p(x)` << 1 */
|
||
|
+ { 0x00000000d4d403bc, 0x00000001f5ac7380 },
|
||
|
+ /* x^79872 mod p(x)` << 1, x^79936 mod p(x)` << 1 */
|
||
|
+ { 0x00000001734b89aa, 0x000000011822ea70 },
|
||
|
+ /* x^78848 mod p(x)` << 1, x^78912 mod p(x)` << 1 */
|
||
|
+ { 0x000000010e7a58d6, 0x00000000c3a33848 },
|
||
|
+ /* x^77824 mod p(x)` << 1, x^77888 mod p(x)` << 1 */
|
||
|
+ { 0x00000001f9f04e9c, 0x00000001bd151c24 },
|
||
|
+ /* x^76800 mod p(x)` << 1, x^76864 mod p(x)` << 1 */
|
||
|
+ { 0x00000000b692225e, 0x0000000056002d76 },
|
||
|
+ /* x^75776 mod p(x)` << 1, x^75840 mod p(x)` << 1 */
|
||
|
+ { 0x000000019b8d3f3e, 0x000000014657c4f4 },
|
||
|
+ /* x^74752 mod p(x)` << 1, x^74816 mod p(x)` << 1 */
|
||
|
+ { 0x00000001a874f11e, 0x0000000113742d7c },
|
||
|
+ /* x^73728 mod p(x)` << 1, x^73792 mod p(x)` << 1 */
|
||
|
+ { 0x000000010d5a4254, 0x000000019c5920ba },
|
||
|
+ /* x^72704 mod p(x)` << 1, x^72768 mod p(x)` << 1 */
|
||
|
+ { 0x00000000bbb2f5d6, 0x000000005216d2d6 },
|
||
|
+ /* x^71680 mod p(x)` << 1, x^71744 mod p(x)` << 1 */
|
||
|
+ { 0x0000000179cc0e36, 0x0000000136f5ad8a },
|
||
|
+ /* x^70656 mod p(x)` << 1, x^70720 mod p(x)` << 1 */
|
||
|
+ { 0x00000001dca1da4a, 0x000000018b07beb6 },
|
||
|
+ /* x^69632 mod p(x)` << 1, x^69696 mod p(x)` << 1 */
|
||
|
+ { 0x00000000feb1a192, 0x00000000db1e93b0 },
|
||
|
+ /* x^68608 mod p(x)` << 1, x^68672 mod p(x)` << 1 */
|
||
|
+ { 0x00000000d1eeedd6, 0x000000000b96fa3a },
|
||
|
+ /* x^67584 mod p(x)` << 1, x^67648 mod p(x)` << 1 */
|
||
|
+ { 0x000000008fad9bb4, 0x00000001d9968af0 },
|
||
|
+ /* x^66560 mod p(x)` << 1, x^66624 mod p(x)` << 1 */
|
||
|
+ { 0x00000001884938e4, 0x000000000e4a77a2 },
|
||
|
+ /* x^65536 mod p(x)` << 1, x^65600 mod p(x)` << 1 */
|
||
|
+ { 0x00000001bc2e9bc0, 0x00000000508c2ac8 },
|
||
|
+ /* x^64512 mod p(x)` << 1, x^64576 mod p(x)` << 1 */
|
||
|
+ { 0x00000001f9658a68, 0x0000000021572a80 },
|
||
|
+ /* x^63488 mod p(x)` << 1, x^63552 mod p(x)` << 1 */
|
||
|
+ { 0x000000001b9224fc, 0x00000001b859daf2 },
|
||
|
+ /* x^62464 mod p(x)` << 1, x^62528 mod p(x)` << 1 */
|
||
|
+ { 0x0000000055b2fb84, 0x000000016f788474 },
|
||
|
+ /* x^61440 mod p(x)` << 1, x^61504 mod p(x)` << 1 */
|
||
|
+ { 0x000000018b090348, 0x00000001b438810e },
|
||
|
+ /* x^60416 mod p(x)` << 1, x^60480 mod p(x)` << 1 */
|
||
|
+ { 0x000000011ccbd5ea, 0x0000000095ddc6f2 },
|
||
|
+ /* x^59392 mod p(x)` << 1, x^59456 mod p(x)` << 1 */
|
||
|
+ { 0x0000000007ae47f8, 0x00000001d977c20c },
|
||
|
+ /* x^58368 mod p(x)` << 1, x^58432 mod p(x)` << 1 */
|
||
|
+ { 0x0000000172acbec0, 0x00000000ebedb99a },
|
||
|
+ /* x^57344 mod p(x)` << 1, x^57408 mod p(x)` << 1 */
|
||
|
+ { 0x00000001c6e3ff20, 0x00000001df9e9e92 },
|
||
|
+ /* x^56320 mod p(x)` << 1, x^56384 mod p(x)` << 1 */
|
||
|
+ { 0x00000000e1b38744, 0x00000001a4a3f952 },
|
||
|
+ /* x^55296 mod p(x)` << 1, x^55360 mod p(x)` << 1 */
|
||
|
+ { 0x00000000791585b2, 0x00000000e2f51220 },
|
||
|
+ /* x^54272 mod p(x)` << 1, x^54336 mod p(x)` << 1 */
|
||
|
+ { 0x00000000ac53b894, 0x000000004aa01f3e },
|
||
|
+ /* x^53248 mod p(x)` << 1, x^53312 mod p(x)` << 1 */
|
||
|
+ { 0x00000001ed5f2cf4, 0x00000000b3e90a58 },
|
||
|
+ /* x^52224 mod p(x)` << 1, x^52288 mod p(x)` << 1 */
|
||
|
+ { 0x00000001df48b2e0, 0x000000000c9ca2aa },
|
||
|
+ /* x^51200 mod p(x)` << 1, x^51264 mod p(x)` << 1 */
|
||
|
+ { 0x00000000049c1c62, 0x0000000151682316 },
|
||
|
+ /* x^50176 mod p(x)` << 1, x^50240 mod p(x)` << 1 */
|
||
|
+ { 0x000000017c460c12, 0x0000000036fce78c },
|
||
|
+ /* x^49152 mod p(x)` << 1, x^49216 mod p(x)` << 1 */
|
||
|
+ { 0x000000015be4da7e, 0x000000009037dc10 },
|
||
|
+ /* x^48128 mod p(x)` << 1, x^48192 mod p(x)` << 1 */
|
||
|
+ { 0x000000010f38f668, 0x00000000d3298582 },
|
||
|
+ /* x^47104 mod p(x)` << 1, x^47168 mod p(x)` << 1 */
|
||
|
+ { 0x0000000039f40a00, 0x00000001b42e8ad6 },
|
||
|
+ /* x^46080 mod p(x)` << 1, x^46144 mod p(x)` << 1 */
|
||
|
+ { 0x00000000bd4c10c4, 0x00000000142a9838 },
|
||
|
+ /* x^45056 mod p(x)` << 1, x^45120 mod p(x)` << 1 */
|
||
|
+ { 0x0000000042db1d98, 0x0000000109c7f190 },
|
||
|
+ /* x^44032 mod p(x)` << 1, x^44096 mod p(x)` << 1 */
|
||
|
+ { 0x00000001c905bae6, 0x0000000056ff9310 },
|
||
|
+ /* x^43008 mod p(x)` << 1, x^43072 mod p(x)` << 1 */
|
||
|
+ { 0x00000000069d40ea, 0x00000001594513aa },
|
||
|
+ /* x^41984 mod p(x)` << 1, x^42048 mod p(x)` << 1 */
|
||
|
+ { 0x000000008e4fbad0, 0x00000001e3b5b1e8 },
|
||
|
+ /* x^40960 mod p(x)` << 1, x^41024 mod p(x)` << 1 */
|
||
|
+ { 0x0000000047bedd46, 0x000000011dd5fc08 },
|
||
|
+ /* x^39936 mod p(x)` << 1, x^40000 mod p(x)` << 1 */
|
||
|
+ { 0x0000000026396bf8, 0x00000001675f0cc2 },
|
||
|
+ /* x^38912 mod p(x)` << 1, x^38976 mod p(x)` << 1 */
|
||
|
+ { 0x00000000379beb92, 0x00000000d1c8dd44 },
|
||
|
+ /* x^37888 mod p(x)` << 1, x^37952 mod p(x)` << 1 */
|
||
|
+ { 0x000000000abae54a, 0x0000000115ebd3d8 },
|
||
|
+ /* x^36864 mod p(x)` << 1, x^36928 mod p(x)` << 1 */
|
||
|
+ { 0x0000000007e6a128, 0x00000001ecbd0dac },
|
||
|
+ /* x^35840 mod p(x)` << 1, x^35904 mod p(x)` << 1 */
|
||
|
+ { 0x000000000ade29d2, 0x00000000cdf67af2 },
|
||
|
+ /* x^34816 mod p(x)` << 1, x^34880 mod p(x)` << 1 */
|
||
|
+ { 0x00000000f974c45c, 0x000000004c01ff4c },
|
||
|
+ /* x^33792 mod p(x)` << 1, x^33856 mod p(x)` << 1 */
|
||
|
+ { 0x00000000e77ac60a, 0x00000000f2d8657e },
|
||
|
+ /* x^32768 mod p(x)` << 1, x^32832 mod p(x)` << 1 */
|
||
|
+ { 0x0000000145895816, 0x000000006bae74c4 },
|
||
|
+ /* x^31744 mod p(x)` << 1, x^31808 mod p(x)` << 1 */
|
||
|
+ { 0x0000000038e362be, 0x0000000152af8aa0 },
|
||
|
+ /* x^30720 mod p(x)` << 1, x^30784 mod p(x)` << 1 */
|
||
|
+ { 0x000000007f991a64, 0x0000000004663802 },
|
||
|
+ /* x^29696 mod p(x)` << 1, x^29760 mod p(x)` << 1 */
|
||
|
+ { 0x00000000fa366d3a, 0x00000001ab2f5afc },
|
||
|
+ /* x^28672 mod p(x)` << 1, x^28736 mod p(x)` << 1 */
|
||
|
+ { 0x00000001a2bb34f0, 0x0000000074a4ebd4 },
|
||
|
+ /* x^27648 mod p(x)` << 1, x^27712 mod p(x)` << 1 */
|
||
|
+ { 0x0000000028a9981e, 0x00000001d7ab3a4c },
|
||
|
+ /* x^26624 mod p(x)` << 1, x^26688 mod p(x)` << 1 */
|
||
|
+ { 0x00000001dbc672be, 0x00000001a8da60c6 },
|
||
|
+ /* x^25600 mod p(x)` << 1, x^25664 mod p(x)` << 1 */
|
||
|
+ { 0x00000000b04d77f6, 0x000000013cf63820 },
|
||
|
+ /* x^24576 mod p(x)` << 1, x^24640 mod p(x)` << 1 */
|
||
|
+ { 0x0000000124400d96, 0x00000000bec12e1e },
|
||
|
+ /* x^23552 mod p(x)` << 1, x^23616 mod p(x)` << 1 */
|
||
|
+ { 0x000000014ca4b414, 0x00000001c6368010 },
|
||
|
+ /* x^22528 mod p(x)` << 1, x^22592 mod p(x)` << 1 */
|
||
|
+ { 0x000000012fe2c938, 0x00000001e6e78758 },
|
||
|
+ /* x^21504 mod p(x)` << 1, x^21568 mod p(x)` << 1 */
|
||
|
+ { 0x00000001faed01e6, 0x000000008d7f2b3c },
|
||
|
+ /* x^20480 mod p(x)` << 1, x^20544 mod p(x)` << 1 */
|
||
|
+ { 0x000000007e80ecfe, 0x000000016b4a156e },
|
||
|
+ /* x^19456 mod p(x)` << 1, x^19520 mod p(x)` << 1 */
|
||
|
+ { 0x0000000098daee94, 0x00000001c63cfeb6 },
|
||
|
+ /* x^18432 mod p(x)` << 1, x^18496 mod p(x)` << 1 */
|
||
|
+ { 0x000000010a04edea, 0x000000015f902670 },
|
||
|
+ /* x^17408 mod p(x)` << 1, x^17472 mod p(x)` << 1 */
|
||
|
+ { 0x00000001c00b4524, 0x00000001cd5de11e },
|
||
|
+ /* x^16384 mod p(x)` << 1, x^16448 mod p(x)` << 1 */
|
||
|
+ { 0x0000000170296550, 0x000000001acaec54 },
|
||
|
+ /* x^15360 mod p(x)` << 1, x^15424 mod p(x)` << 1 */
|
||
|
+ { 0x0000000181afaa48, 0x000000002bd0ca78 },
|
||
|
+ /* x^14336 mod p(x)` << 1, x^14400 mod p(x)` << 1 */
|
||
|
+ { 0x0000000185a31ffa, 0x0000000032d63d5c },
|
||
|
+ /* x^13312 mod p(x)` << 1, x^13376 mod p(x)` << 1 */
|
||
|
+ { 0x000000002469f608, 0x000000001c6d4e4c },
|
||
|
+ /* x^12288 mod p(x)` << 1, x^12352 mod p(x)` << 1 */
|
||
|
+ { 0x000000006980102a, 0x0000000106a60b92 },
|
||
|
+ /* x^11264 mod p(x)` << 1, x^11328 mod p(x)` << 1 */
|
||
|
+ { 0x0000000111ea9ca8, 0x00000000d3855e12 },
|
||
|
+ /* x^10240 mod p(x)` << 1, x^10304 mod p(x)` << 1 */
|
||
|
+ { 0x00000001bd1d29ce, 0x00000000e3125636 },
|
||
|
+ /* x^9216 mod p(x)` << 1, x^9280 mod p(x)` << 1 */
|
||
|
+ { 0x00000001b34b9580, 0x000000009e8f7ea4 },
|
||
|
+ /* x^8192 mod p(x)` << 1, x^8256 mod p(x)` << 1 */
|
||
|
+ { 0x000000003076054e, 0x00000001c82e562c },
|
||
|
+ /* x^7168 mod p(x)` << 1, x^7232 mod p(x)` << 1 */
|
||
|
+ { 0x000000012a608ea4, 0x00000000ca9f09ce },
|
||
|
+ /* x^6144 mod p(x)` << 1, x^6208 mod p(x)` << 1 */
|
||
|
+ { 0x00000000784d05fe, 0x00000000c63764e6 },
|
||
|
+ /* x^5120 mod p(x)` << 1, x^5184 mod p(x)` << 1 */
|
||
|
+ { 0x000000016ef0d82a, 0x0000000168d2e49e },
|
||
|
+ /* x^4096 mod p(x)` << 1, x^4160 mod p(x)` << 1 */
|
||
|
+ { 0x0000000075bda454, 0x00000000e986c148 },
|
||
|
+ /* x^3072 mod p(x)` << 1, x^3136 mod p(x)` << 1 */
|
||
|
+ { 0x000000003dc0a1c4, 0x00000000cfb65894 },
|
||
|
+ /* x^2048 mod p(x)` << 1, x^2112 mod p(x)` << 1 */
|
||
|
+ { 0x00000000e9a5d8be, 0x0000000111cadee4 },
|
||
|
+ /* x^1024 mod p(x)` << 1, x^1088 mod p(x)` << 1 */
|
||
|
+ { 0x00000001609bc4b4, 0x0000000171fb63ce }
|
||
|
+#else /* __LITTLE_ENDIAN__ */
|
||
|
+ /* x^261120 mod p(x)` << 1, x^261184 mod p(x)` << 1 */
|
||
|
+ { 0x00000000b6ca9e20, 0x000000009c37c408 },
|
||
|
+ /* x^260096 mod p(x)` << 1, x^260160 mod p(x)` << 1 */
|
||
|
+ { 0x00000000350249a8, 0x00000001b51df26c },
|
||
|
+ /* x^259072 mod p(x)` << 1, x^259136 mod p(x)` << 1 */
|
||
|
+ { 0x00000001862dac54, 0x000000000724b9d0 },
|
||
|
+ /* x^258048 mod p(x)` << 1, x^258112 mod p(x)` << 1 */
|
||
|
+ { 0x00000001d87fb48c, 0x00000001c00532fe },
|
||
|
+ /* x^257024 mod p(x)` << 1, x^257088 mod p(x)` << 1 */
|
||
|
+ { 0x00000001f39b699e, 0x00000000f05a9362 },
|
||
|
+ /* x^256000 mod p(x)` << 1, x^256064 mod p(x)` << 1 */
|
||
|
+ { 0x0000000101da11b4, 0x00000001e1007970 },
|
||
|
+ /* x^254976 mod p(x)` << 1, x^255040 mod p(x)` << 1 */
|
||
|
+ { 0x00000001cab571e0, 0x00000000a57366ee },
|
||
|
+ /* x^253952 mod p(x)` << 1, x^254016 mod p(x)` << 1 */
|
||
|
+ { 0x00000000c7020cfe, 0x0000000192011284 },
|
||
|
+ /* x^252928 mod p(x)` << 1, x^252992 mod p(x)` << 1 */
|
||
|
+ { 0x00000000cdaed1ae, 0x0000000162716d9a },
|
||
|
+ /* x^251904 mod p(x)` << 1, x^251968 mod p(x)` << 1 */
|
||
|
+ { 0x00000001e804effc, 0x00000000cd97ecde },
|
||
|
+ /* x^250880 mod p(x)` << 1, x^250944 mod p(x)` << 1 */
|
||
|
+ { 0x0000000077c3ea3a, 0x0000000058812bc0 },
|
||
|
+ /* x^249856 mod p(x)` << 1, x^249920 mod p(x)` << 1 */
|
||
|
+ { 0x0000000068df31b4, 0x0000000088b8c12e },
|
||
|
+ /* x^248832 mod p(x)` << 1, x^248896 mod p(x)` << 1 */
|
||
|
+ { 0x00000000b059b6c2, 0x00000001230b234c },
|
||
|
+ /* x^247808 mod p(x)` << 1, x^247872 mod p(x)` << 1 */
|
||
|
+ { 0x0000000145fb8ed8, 0x00000001120b416e },
|
||
|
+ /* x^246784 mod p(x)` << 1, x^246848 mod p(x)` << 1 */
|
||
|
+ { 0x00000000cbc09168, 0x00000001974aecb0 },
|
||
|
+ /* x^245760 mod p(x)` << 1, x^245824 mod p(x)` << 1 */
|
||
|
+ { 0x000000005ceeedc2, 0x000000008ee3f226 },
|
||
|
+ /* x^244736 mod p(x)` << 1, x^244800 mod p(x)` << 1 */
|
||
|
+ { 0x0000000047d74e86, 0x00000001089aba9a },
|
||
|
+ /* x^243712 mod p(x)` << 1, x^243776 mod p(x)` << 1 */
|
||
|
+ { 0x00000001407e9e22, 0x0000000065113872 },
|
||
|
+ /* x^242688 mod p(x)` << 1, x^242752 mod p(x)` << 1 */
|
||
|
+ { 0x00000001da967bda, 0x000000005c07ec10 },
|
||
|
+ /* x^241664 mod p(x)` << 1, x^241728 mod p(x)` << 1 */
|
||
|
+ { 0x000000006c898368, 0x0000000187590924 },
|
||
|
+ /* x^240640 mod p(x)` << 1, x^240704 mod p(x)` << 1 */
|
||
|
+ { 0x00000000f2d14c98, 0x00000000e35da7c6 },
|
||
|
+ /* x^239616 mod p(x)` << 1, x^239680 mod p(x)` << 1 */
|
||
|
+ { 0x00000001993c6ad4, 0x000000000415855a },
|
||
|
+ /* x^238592 mod p(x)` << 1, x^238656 mod p(x)` << 1 */
|
||
|
+ { 0x000000014683d1ac, 0x0000000073617758 },
|
||
|
+ /* x^237568 mod p(x)` << 1, x^237632 mod p(x)` << 1 */
|
||
|
+ { 0x00000001a7c93e6c, 0x0000000176021d28 },
|
||
|
+ /* x^236544 mod p(x)` << 1, x^236608 mod p(x)` << 1 */
|
||
|
+ { 0x000000010211e90a, 0x00000001c358fd0a },
|
||
|
+ /* x^235520 mod p(x)` << 1, x^235584 mod p(x)` << 1 */
|
||
|
+ { 0x000000001119403e, 0x00000001ff7a2c18 },
|
||
|
+ /* x^234496 mod p(x)` << 1, x^234560 mod p(x)` << 1 */
|
||
|
+ { 0x000000001c3261aa, 0x00000000f2d9f7e4 },
|
||
|
+ /* x^233472 mod p(x)` << 1, x^233536 mod p(x)` << 1 */
|
||
|
+ { 0x000000014e37a634, 0x000000016cf1f9c8 },
|
||
|
+ /* x^232448 mod p(x)` << 1, x^232512 mod p(x)` << 1 */
|
||
|
+ { 0x0000000073786c0c, 0x000000010af9279a },
|
||
|
+ /* x^231424 mod p(x)` << 1, x^231488 mod p(x)` << 1 */
|
||
|
+ { 0x000000011dc037f8, 0x0000000004f101e8 },
|
||
|
+ /* x^230400 mod p(x)` << 1, x^230464 mod p(x)` << 1 */
|
||
|
+ { 0x0000000031433dfc, 0x0000000070bcf184 },
|
||
|
+ /* x^229376 mod p(x)` << 1, x^229440 mod p(x)` << 1 */
|
||
|
+ { 0x000000009cde8348, 0x000000000a8de642 },
|
||
|
+ /* x^228352 mod p(x)` << 1, x^228416 mod p(x)` << 1 */
|
||
|
+ { 0x0000000038d3c2a6, 0x0000000062ea130c },
|
||
|
+ /* x^227328 mod p(x)` << 1, x^227392 mod p(x)` << 1 */
|
||
|
+ { 0x000000011b25f260, 0x00000001eb31cbb2 },
|
||
|
+ /* x^226304 mod p(x)` << 1, x^226368 mod p(x)` << 1 */
|
||
|
+ { 0x000000001629e6f0, 0x0000000170783448 },
|
||
|
+ /* x^225280 mod p(x)` << 1, x^225344 mod p(x)` << 1 */
|
||
|
+ { 0x0000000160838b4c, 0x00000001a684b4c6 },
|
||
|
+ /* x^224256 mod p(x)` << 1, x^224320 mod p(x)` << 1 */
|
||
|
+ { 0x000000007a44011c, 0x00000000253ca5b4 },
|
||
|
+ /* x^223232 mod p(x)` << 1, x^223296 mod p(x)` << 1 */
|
||
|
+ { 0x00000000226f417a, 0x0000000057b4b1e2 },
|
||
|
+ /* x^222208 mod p(x)` << 1, x^222272 mod p(x)` << 1 */
|
||
|
+ { 0x0000000045eb2eb4, 0x00000000b6bd084c },
|
||
|
+ /* x^221184 mod p(x)` << 1, x^221248 mod p(x)` << 1 */
|
||
|
+ { 0x000000014459d70c, 0x0000000123c2d592 },
|
||
|
+ /* x^220160 mod p(x)` << 1, x^220224 mod p(x)` << 1 */
|
||
|
+ { 0x00000001d406ed82, 0x00000000159dafce },
|
||
|
+ /* x^219136 mod p(x)` << 1, x^219200 mod p(x)` << 1 */
|
||
|
+ { 0x0000000160c8e1a8, 0x0000000127e1a64e },
|
||
|
+ /* x^218112 mod p(x)` << 1, x^218176 mod p(x)` << 1 */
|
||
|
+ { 0x0000000027ba8098, 0x0000000056860754 },
|
||
|
+ /* x^217088 mod p(x)` << 1, x^217152 mod p(x)` << 1 */
|
||
|
+ { 0x000000006d92d018, 0x00000001e661aae8 },
|
||
|
+ /* x^216064 mod p(x)` << 1, x^216128 mod p(x)` << 1 */
|
||
|
+ { 0x000000012ed7e3f2, 0x00000000f82c6166 },
|
||
|
+ /* x^215040 mod p(x)` << 1, x^215104 mod p(x)` << 1 */
|
||
|
+ { 0x000000002dc87788, 0x00000000c4f9c7ae },
|
||
|
+ /* x^214016 mod p(x)` << 1, x^214080 mod p(x)` << 1 */
|
||
|
+ { 0x0000000018240bb8, 0x0000000074203d20 },
|
||
|
+ /* x^212992 mod p(x)` << 1, x^213056 mod p(x)` << 1 */
|
||
|
+ { 0x000000001ad38158, 0x0000000198173052 },
|
||
|
+ /* x^211968 mod p(x)` << 1, x^212032 mod p(x)` << 1 */
|
||
|
+ { 0x00000001396b78f2, 0x00000001ce8aba54 },
|
||
|
+ /* x^210944 mod p(x)` << 1, x^211008 mod p(x)` << 1 */
|
||
|
+ { 0x000000011a681334, 0x00000001850d5d94 },
|
||
|
+ /* x^209920 mod p(x)` << 1, x^209984 mod p(x)` << 1 */
|
||
|
+ { 0x000000012104732e, 0x00000001d609239c },
|
||
|
+ /* x^208896 mod p(x)` << 1, x^208960 mod p(x)` << 1 */
|
||
|
+ { 0x00000000a140d90c, 0x000000001595f048 },
|
||
|
+ /* x^207872 mod p(x)` << 1, x^207936 mod p(x)` << 1 */
|
||
|
+ { 0x00000001b7215eda, 0x0000000042ccee08 },
|
||
|
+ /* x^206848 mod p(x)` << 1, x^206912 mod p(x)` << 1 */
|
||
|
+ { 0x00000001aaf1df3c, 0x000000010a389d74 },
|
||
|
+ /* x^205824 mod p(x)` << 1, x^205888 mod p(x)` << 1 */
|
||
|
+ { 0x0000000029d15b8a, 0x000000012a840da6 },
|
||
|
+ /* x^204800 mod p(x)` << 1, x^204864 mod p(x)` << 1 */
|
||
|
+ { 0x00000000f1a96922, 0x000000001d181c0c },
|
||
|
+ /* x^203776 mod p(x)` << 1, x^203840 mod p(x)` << 1 */
|
||
|
+ { 0x00000001ac80d03c, 0x0000000068b7d1f6 },
|
||
|
+ /* x^202752 mod p(x)` << 1, x^202816 mod p(x)` << 1 */
|
||
|
+ { 0x000000000f11d56a, 0x000000005b0f14fc },
|
||
|
+ /* x^201728 mod p(x)` << 1, x^201792 mod p(x)` << 1 */
|
||
|
+ { 0x00000001f1c022a2, 0x0000000179e9e730 },
|
||
|
+ /* x^200704 mod p(x)` << 1, x^200768 mod p(x)` << 1 */
|
||
|
+ { 0x0000000173d00ae2, 0x00000001ce1368d6 },
|
||
|
+ /* x^199680 mod p(x)` << 1, x^199744 mod p(x)` << 1 */
|
||
|
+ { 0x00000001d4ffe4ac, 0x0000000112c3a84c },
|
||
|
+ /* x^198656 mod p(x)` << 1, x^198720 mod p(x)` << 1 */
|
||
|
+ { 0x000000016edc5ae4, 0x00000000de940fee },
|
||
|
+ /* x^197632 mod p(x)` << 1, x^197696 mod p(x)` << 1 */
|
||
|
+ { 0x00000001f1a02140, 0x00000000fe896b7e },
|
||
|
+ /* x^196608 mod p(x)` << 1, x^196672 mod p(x)` << 1 */
|
||
|
+ { 0x00000000ca0b28a0, 0x00000001f797431c },
|
||
|
+ /* x^195584 mod p(x)` << 1, x^195648 mod p(x)` << 1 */
|
||
|
+ { 0x00000001928e30a2, 0x0000000053e989ba },
|
||
|
+ /* x^194560 mod p(x)` << 1, x^194624 mod p(x)` << 1 */
|
||
|
+ { 0x0000000097b1b002, 0x000000003920cd16 },
|
||
|
+ /* x^193536 mod p(x)` << 1, x^193600 mod p(x)` << 1 */
|
||
|
+ { 0x00000000b15bf906, 0x00000001e6f579b8 },
|
||
|
+ /* x^192512 mod p(x)` << 1, x^192576 mod p(x)` << 1 */
|
||
|
+ { 0x00000000411c5d52, 0x000000007493cb0a },
|
||
|
+ /* x^191488 mod p(x)` << 1, x^191552 mod p(x)` << 1 */
|
||
|
+ { 0x00000001c36f3300, 0x00000001bdd376d8 },
|
||
|
+ /* x^190464 mod p(x)` << 1, x^190528 mod p(x)` << 1 */
|
||
|
+ { 0x00000001119227e0, 0x000000016badfee6 },
|
||
|
+ /* x^189440 mod p(x)` << 1, x^189504 mod p(x)` << 1 */
|
||
|
+ { 0x00000000114d4702, 0x0000000071de5c58 },
|
||
|
+ /* x^188416 mod p(x)` << 1, x^188480 mod p(x)` << 1 */
|
||
|
+ { 0x00000000458b5b98, 0x00000000453f317c },
|
||
|
+ /* x^187392 mod p(x)` << 1, x^187456 mod p(x)` << 1 */
|
||
|
+ { 0x000000012e31fb8e, 0x0000000121675cce },
|
||
|
+ /* x^186368 mod p(x)` << 1, x^186432 mod p(x)` << 1 */
|
||
|
+ { 0x000000005cf619d8, 0x00000001f409ee92 },
|
||
|
+ /* x^185344 mod p(x)` << 1, x^185408 mod p(x)` << 1 */
|
||
|
+ { 0x0000000063f4d8b2, 0x00000000f36b9c88 },
|
||
|
+ /* x^184320 mod p(x)` << 1, x^184384 mod p(x)` << 1 */
|
||
|
+ { 0x000000004138dc8a, 0x0000000036b398f4 },
|
||
|
+ /* x^183296 mod p(x)` << 1, x^183360 mod p(x)` << 1 */
|
||
|
+ { 0x00000001d29ee8e0, 0x00000001748f9adc },
|
||
|
+ /* x^182272 mod p(x)` << 1, x^182336 mod p(x)` << 1 */
|
||
|
+ { 0x000000006a08ace8, 0x00000001be94ec00 },
|
||
|
+ /* x^181248 mod p(x)` << 1, x^181312 mod p(x)` << 1 */
|
||
|
+ { 0x0000000127d42010, 0x00000000b74370d6 },
|
||
|
+ /* x^180224 mod p(x)` << 1, x^180288 mod p(x)` << 1 */
|
||
|
+ { 0x0000000019d76b62, 0x00000001174d0b98 },
|
||
|
+ /* x^179200 mod p(x)` << 1, x^179264 mod p(x)` << 1 */
|
||
|
+ { 0x00000001b1471f6e, 0x00000000befc06a4 },
|
||
|
+ /* x^178176 mod p(x)` << 1, x^178240 mod p(x)` << 1 */
|
||
|
+ { 0x00000001f64c19cc, 0x00000001ae125288 },
|
||
|
+ /* x^177152 mod p(x)` << 1, x^177216 mod p(x)` << 1 */
|
||
|
+ { 0x00000000003c0ea0, 0x0000000095c19b34 },
|
||
|
+ /* x^176128 mod p(x)` << 1, x^176192 mod p(x)` << 1 */
|
||
|
+ { 0x000000014d73abf6, 0x00000001a78496f2 },
|
||
|
+ /* x^175104 mod p(x)` << 1, x^175168 mod p(x)` << 1 */
|
||
|
+ { 0x00000001620eb844, 0x00000001ac5390a0 },
|
||
|
+ /* x^174080 mod p(x)` << 1, x^174144 mod p(x)` << 1 */
|
||
|
+ { 0x0000000147655048, 0x000000002a80ed6e },
|
||
|
+ /* x^173056 mod p(x)` << 1, x^173120 mod p(x)` << 1 */
|
||
|
+ { 0x0000000067b5077e, 0x00000001fa9b0128 },
|
||
|
+ /* x^172032 mod p(x)` << 1, x^172096 mod p(x)` << 1 */
|
||
|
+ { 0x0000000010ffe206, 0x00000001ea94929e },
|
||
|
+ /* x^171008 mod p(x)` << 1, x^171072 mod p(x)` << 1 */
|
||
|
+ { 0x000000000fee8f1e, 0x0000000125f4305c },
|
||
|
+ /* x^169984 mod p(x)` << 1, x^170048 mod p(x)` << 1 */
|
||
|
+ { 0x00000001da26fbae, 0x00000001471e2002 },
|
||
|
+ /* x^168960 mod p(x)` << 1, x^169024 mod p(x)` << 1 */
|
||
|
+ { 0x00000001b3a8bd88, 0x0000000132d2253a },
|
||
|
+ /* x^167936 mod p(x)` << 1, x^168000 mod p(x)` << 1 */
|
||
|
+ { 0x00000000e8f3898e, 0x00000000f26b3592 },
|
||
|
+ /* x^166912 mod p(x)` << 1, x^166976 mod p(x)` << 1 */
|
||
|
+ { 0x00000000b0d0d28c, 0x00000000bc8b67b0 },
|
||
|
+ /* x^165888 mod p(x)` << 1, x^165952 mod p(x)` << 1 */
|
||
|
+ { 0x0000000030f2a798, 0x000000013a826ef2 },
|
||
|
+ /* x^164864 mod p(x)` << 1, x^164928 mod p(x)` << 1 */
|
||
|
+ { 0x000000000fba1002, 0x0000000081482c84 },
|
||
|
+ /* x^163840 mod p(x)` << 1, x^163904 mod p(x)` << 1 */
|
||
|
+ { 0x00000000bdb9bd72, 0x00000000e77307c2 },
|
||
|
+ /* x^162816 mod p(x)` << 1, x^162880 mod p(x)` << 1 */
|
||
|
+ { 0x0000000075d3bf5a, 0x00000000d4a07ec8 },
|
||
|
+ /* x^161792 mod p(x)` << 1, x^161856 mod p(x)` << 1 */
|
||
|
+ { 0x00000000ef1f98a0, 0x0000000017102100 },
|
||
|
+ /* x^160768 mod p(x)` << 1, x^160832 mod p(x)` << 1 */
|
||
|
+ { 0x00000000689c7602, 0x00000000db406486 },
|
||
|
+ /* x^159744 mod p(x)` << 1, x^159808 mod p(x)` << 1 */
|
||
|
+ { 0x000000016d5fa5fe, 0x0000000192db7f88 },
|
||
|
+ /* x^158720 mod p(x)` << 1, x^158784 mod p(x)` << 1 */
|
||
|
+ { 0x00000001d0d2b9ca, 0x000000018bf67b1e },
|
||
|
+ /* x^157696 mod p(x)` << 1, x^157760 mod p(x)` << 1 */
|
||
|
+ { 0x0000000041e7b470, 0x000000007c09163e },
|
||
|
+ /* x^156672 mod p(x)` << 1, x^156736 mod p(x)` << 1 */
|
||
|
+ { 0x00000001cbb6495e, 0x000000000adac060 },
|
||
|
+ /* x^155648 mod p(x)` << 1, x^155712 mod p(x)` << 1 */
|
||
|
+ { 0x000000010052a0b0, 0x00000000bd8316ae },
|
||
|
+ /* x^154624 mod p(x)` << 1, x^154688 mod p(x)` << 1 */
|
||
|
+ { 0x00000001d8effb5c, 0x000000019f09ab54 },
|
||
|
+ /* x^153600 mod p(x)` << 1, x^153664 mod p(x)` << 1 */
|
||
|
+ { 0x00000001d969853c, 0x0000000125155542 },
|
||
|
+ /* x^152576 mod p(x)` << 1, x^152640 mod p(x)` << 1 */
|
||
|
+ { 0x00000000523ccce2, 0x000000018fdb5882 },
|
||
|
+ /* x^151552 mod p(x)` << 1, x^151616 mod p(x)` << 1 */
|
||
|
+ { 0x000000001e2436bc, 0x00000000e794b3f4 },
|
||
|
+ /* x^150528 mod p(x)` << 1, x^150592 mod p(x)` << 1 */
|
||
|
+ { 0x00000000ddd1c3a2, 0x000000016f9bb022 },
|
||
|
+ /* x^149504 mod p(x)` << 1, x^149568 mod p(x)` << 1 */
|
||
|
+ { 0x0000000019fcfe38, 0x00000000290c9978 },
|
||
|
+ /* x^148480 mod p(x)` << 1, x^148544 mod p(x)` << 1 */
|
||
|
+ { 0x00000001ce95db64, 0x0000000083c0f350 },
|
||
|
+ /* x^147456 mod p(x)` << 1, x^147520 mod p(x)` << 1 */
|
||
|
+ { 0x00000000af582806, 0x0000000173ea6628 },
|
||
|
+ /* x^146432 mod p(x)` << 1, x^146496 mod p(x)` << 1 */
|
||
|
+ { 0x00000001006388f6, 0x00000001c8b4e00a },
|
||
|
+ /* x^145408 mod p(x)` << 1, x^145472 mod p(x)` << 1 */
|
||
|
+ { 0x0000000179eca00a, 0x00000000de95d6aa },
|
||
|
+ /* x^144384 mod p(x)` << 1, x^144448 mod p(x)` << 1 */
|
||
|
+ { 0x0000000122410a6a, 0x000000010b7f7248 },
|
||
|
+ /* x^143360 mod p(x)` << 1, x^143424 mod p(x)` << 1 */
|
||
|
+ { 0x000000004288e87c, 0x00000001326e3a06 },
|
||
|
+ /* x^142336 mod p(x)` << 1, x^142400 mod p(x)` << 1 */
|
||
|
+ { 0x000000016c5490da, 0x00000000bb62c2e6 },
|
||
|
+ /* x^141312 mod p(x)` << 1, x^141376 mod p(x)` << 1 */
|
||
|
+ { 0x00000000d1c71f6e, 0x0000000156a4b2c2 },
|
||
|
+ /* x^140288 mod p(x)` << 1, x^140352 mod p(x)` << 1 */
|
||
|
+ { 0x00000001b4ce08a6, 0x000000011dfe763a },
|
||
|
+ /* x^139264 mod p(x)` << 1, x^139328 mod p(x)` << 1 */
|
||
|
+ { 0x00000001466ba60c, 0x000000007bcca8e2 },
|
||
|
+ /* x^138240 mod p(x)` << 1, x^138304 mod p(x)` << 1 */
|
||
|
+ { 0x00000001f6c488a4, 0x0000000186118faa },
|
||
|
+ /* x^137216 mod p(x)` << 1, x^137280 mod p(x)` << 1 */
|
||
|
+ { 0x000000013bfb0682, 0x0000000111a65a88 },
|
||
|
+ /* x^136192 mod p(x)` << 1, x^136256 mod p(x)` << 1 */
|
||
|
+ { 0x00000000690e9e54, 0x000000003565e1c4 },
|
||
|
+ /* x^135168 mod p(x)` << 1, x^135232 mod p(x)` << 1 */
|
||
|
+ { 0x00000000281346b6, 0x000000012ed02a82 },
|
||
|
+ /* x^134144 mod p(x)` << 1, x^134208 mod p(x)` << 1 */
|
||
|
+ { 0x0000000156464024, 0x00000000c486ecfc },
|
||
|
+ /* x^133120 mod p(x)` << 1, x^133184 mod p(x)` << 1 */
|
||
|
+ { 0x000000016063a8dc, 0x0000000001b951b2 },
|
||
|
+ /* x^132096 mod p(x)` << 1, x^132160 mod p(x)` << 1 */
|
||
|
+ { 0x0000000116a66362, 0x0000000048143916 },
|
||
|
+ /* x^131072 mod p(x)` << 1, x^131136 mod p(x)` << 1 */
|
||
|
+ { 0x000000017e8aa4d2, 0x00000001dc2ae124 },
|
||
|
+ /* x^130048 mod p(x)` << 1, x^130112 mod p(x)` << 1 */
|
||
|
+ { 0x00000001728eb10c, 0x00000001416c58d6 },
|
||
|
+ /* x^129024 mod p(x)` << 1, x^129088 mod p(x)` << 1 */
|
||
|
+ { 0x00000001b08fd7fa, 0x00000000a479744a },
|
||
|
+ /* x^128000 mod p(x)` << 1, x^128064 mod p(x)` << 1 */
|
||
|
+ { 0x00000001092a16e8, 0x0000000096ca3a26 },
|
||
|
+ /* x^126976 mod p(x)` << 1, x^127040 mod p(x)` << 1 */
|
||
|
+ { 0x00000000a505637c, 0x00000000ff223d4e },
|
||
|
+ /* x^125952 mod p(x)` << 1, x^126016 mod p(x)` << 1 */
|
||
|
+ { 0x00000000d94869b2, 0x000000010e84da42 },
|
||
|
+ /* x^124928 mod p(x)` << 1, x^124992 mod p(x)` << 1 */
|
||
|
+ { 0x00000001c8b203ae, 0x00000001b61ba3d0 },
|
||
|
+ /* x^123904 mod p(x)` << 1, x^123968 mod p(x)` << 1 */
|
||
|
+ { 0x000000005704aea0, 0x00000000680f2de8 },
|
||
|
+ /* x^122880 mod p(x)` << 1, x^122944 mod p(x)` << 1 */
|
||
|
+ { 0x000000012e295fa2, 0x000000008772a9a8 },
|
||
|
+ /* x^121856 mod p(x)` << 1, x^121920 mod p(x)` << 1 */
|
||
|
+ { 0x000000011d0908bc, 0x0000000155f295bc },
|
||
|
+ /* x^120832 mod p(x)` << 1, x^120896 mod p(x)` << 1 */
|
||
|
+ { 0x0000000193ed97ea, 0x00000000595f9282 },
|
||
|
+ /* x^119808 mod p(x)` << 1, x^119872 mod p(x)` << 1 */
|
||
|
+ { 0x000000013a0f1c52, 0x0000000164b1c25a },
|
||
|
+ /* x^118784 mod p(x)` << 1, x^118848 mod p(x)` << 1 */
|
||
|
+ { 0x000000010c2c40c0, 0x00000000fbd67c50 },
|
||
|
+ /* x^117760 mod p(x)` << 1, x^117824 mod p(x)` << 1 */
|
||
|
+ { 0x00000000ff6fac3e, 0x0000000096076268 },
|
||
|
+ /* x^116736 mod p(x)` << 1, x^116800 mod p(x)` << 1 */
|
||
|
+ { 0x000000017b3609c0, 0x00000001d288e4cc },
|
||
|
+ /* x^115712 mod p(x)` << 1, x^115776 mod p(x)` << 1 */
|
||
|
+ { 0x0000000088c8c922, 0x00000001eaac1bdc },
|
||
|
+ /* x^114688 mod p(x)` << 1, x^114752 mod p(x)` << 1 */
|
||
|
+ { 0x00000001751baae6, 0x00000001f1ea39e2 },
|
||
|
+ /* x^113664 mod p(x)` << 1, x^113728 mod p(x)` << 1 */
|
||
|
+ { 0x0000000107952972, 0x00000001eb6506fc },
|
||
|
+ /* x^112640 mod p(x)` << 1, x^112704 mod p(x)` << 1 */
|
||
|
+ { 0x0000000162b00abe, 0x000000010f806ffe },
|
||
|
+ /* x^111616 mod p(x)` << 1, x^111680 mod p(x)` << 1 */
|
||
|
+ { 0x000000000d7b404c, 0x000000010408481e },
|
||
|
+ /* x^110592 mod p(x)` << 1, x^110656 mod p(x)` << 1 */
|
||
|
+ { 0x00000000763b13d4, 0x0000000188260534 },
|
||
|
+ /* x^109568 mod p(x)` << 1, x^109632 mod p(x)` << 1 */
|
||
|
+ { 0x00000000f6dc22d8, 0x0000000058fc73e0 },
|
||
|
+ /* x^108544 mod p(x)` << 1, x^108608 mod p(x)` << 1 */
|
||
|
+ { 0x000000007daae060, 0x00000000391c59b8 },
|
||
|
+ /* x^107520 mod p(x)` << 1, x^107584 mod p(x)` << 1 */
|
||
|
+ { 0x000000013359ab7c, 0x000000018b638400 },
|
||
|
+ /* x^106496 mod p(x)` << 1, x^106560 mod p(x)` << 1 */
|
||
|
+ { 0x000000008add438a, 0x000000011738f5c4 },
|
||
|
+ /* x^105472 mod p(x)` << 1, x^105536 mod p(x)` << 1 */
|
||
|
+ { 0x00000001edbefdea, 0x000000008cf7c6da },
|
||
|
+ /* x^104448 mod p(x)` << 1, x^104512 mod p(x)` << 1 */
|
||
|
+ { 0x000000004104e0f8, 0x00000001ef97fb16 },
|
||
|
+ /* x^103424 mod p(x)` << 1, x^103488 mod p(x)` << 1 */
|
||
|
+ { 0x00000000b48a8222, 0x0000000102130e20 },
|
||
|
+ /* x^102400 mod p(x)` << 1, x^102464 mod p(x)` << 1 */
|
||
|
+ { 0x00000001bcb46844, 0x00000000db968898 },
|
||
|
+ /* x^101376 mod p(x)` << 1, x^101440 mod p(x)` << 1 */
|
||
|
+ { 0x000000013293ce0a, 0x00000000b5047b5e },
|
||
|
+ /* x^100352 mod p(x)` << 1, x^100416 mod p(x)` << 1 */
|
||
|
+ { 0x00000001710d0844, 0x000000010b90fdb2 },
|
||
|
+ /* x^99328 mod p(x)` << 1, x^99392 mod p(x)` << 1 */
|
||
|
+ { 0x0000000117907f6e, 0x000000004834a32e },
|
||
|
+ /* x^98304 mod p(x)` << 1, x^98368 mod p(x)` << 1 */
|
||
|
+ { 0x0000000087ddf93e, 0x0000000059c8f2b0 },
|
||
|
+ /* x^97280 mod p(x)` << 1, x^97344 mod p(x)` << 1 */
|
||
|
+ { 0x000000005970e9b0, 0x0000000122cec508 },
|
||
|
+ /* x^96256 mod p(x)` << 1, x^96320 mod p(x)` << 1 */
|
||
|
+ { 0x0000000185b2b7d0, 0x000000000a330cda },
|
||
|
+ /* x^95232 mod p(x)` << 1, x^95296 mod p(x)` << 1 */
|
||
|
+ { 0x00000001dcee0efc, 0x000000014a47148c },
|
||
|
+ /* x^94208 mod p(x)` << 1, x^94272 mod p(x)` << 1 */
|
||
|
+ { 0x0000000030da2722, 0x0000000042c61cb8 },
|
||
|
+ /* x^93184 mod p(x)` << 1, x^93248 mod p(x)` << 1 */
|
||
|
+ { 0x000000012f925a18, 0x0000000012fe6960 },
|
||
|
+ /* x^92160 mod p(x)` << 1, x^92224 mod p(x)` << 1 */
|
||
|
+ { 0x00000000dd2e357c, 0x00000000dbda2c20 },
|
||
|
+ /* x^91136 mod p(x)` << 1, x^91200 mod p(x)` << 1 */
|
||
|
+ { 0x00000000071c80de, 0x000000011122410c },
|
||
|
+ /* x^90112 mod p(x)` << 1, x^90176 mod p(x)` << 1 */
|
||
|
+ { 0x000000011513140a, 0x00000000977b2070 },
|
||
|
+ /* x^89088 mod p(x)` << 1, x^89152 mod p(x)` << 1 */
|
||
|
+ { 0x00000001df876e8e, 0x000000014050438e },
|
||
|
+ /* x^88064 mod p(x)` << 1, x^88128 mod p(x)` << 1 */
|
||
|
+ { 0x000000015f81d6ce, 0x0000000147c840e8 },
|
||
|
+ /* x^87040 mod p(x)` << 1, x^87104 mod p(x)` << 1 */
|
||
|
+ { 0x000000019dd94dbe, 0x00000001cc7c88ce },
|
||
|
+ /* x^86016 mod p(x)` << 1, x^86080 mod p(x)` << 1 */
|
||
|
+ { 0x00000001373d206e, 0x00000001476b35a4 },
|
||
|
+ /* x^84992 mod p(x)` << 1, x^85056 mod p(x)` << 1 */
|
||
|
+ { 0x00000000668ccade, 0x000000013d52d508 },
|
||
|
+ /* x^83968 mod p(x)` << 1, x^84032 mod p(x)` << 1 */
|
||
|
+ { 0x00000001b192d268, 0x000000008e4be32e },
|
||
|
+ /* x^82944 mod p(x)` << 1, x^83008 mod p(x)` << 1 */
|
||
|
+ { 0x00000000e30f3a78, 0x00000000024120fe },
|
||
|
+ /* x^81920 mod p(x)` << 1, x^81984 mod p(x)` << 1 */
|
||
|
+ { 0x000000010ef1f7bc, 0x00000000ddecddb4 },
|
||
|
+ /* x^80896 mod p(x)` << 1, x^80960 mod p(x)` << 1 */
|
||
|
+ { 0x00000001f5ac7380, 0x00000000d4d403bc },
|
||
|
+ /* x^79872 mod p(x)` << 1, x^79936 mod p(x)` << 1 */
|
||
|
+ { 0x000000011822ea70, 0x00000001734b89aa },
|
||
|
+ /* x^78848 mod p(x)` << 1, x^78912 mod p(x)` << 1 */
|
||
|
+ { 0x00000000c3a33848, 0x000000010e7a58d6 },
|
||
|
+ /* x^77824 mod p(x)` << 1, x^77888 mod p(x)` << 1 */
|
||
|
+ { 0x00000001bd151c24, 0x00000001f9f04e9c },
|
||
|
+ /* x^76800 mod p(x)` << 1, x^76864 mod p(x)` << 1 */
|
||
|
+ { 0x0000000056002d76, 0x00000000b692225e },
|
||
|
+ /* x^75776 mod p(x)` << 1, x^75840 mod p(x)` << 1 */
|
||
|
+ { 0x000000014657c4f4, 0x000000019b8d3f3e },
|
||
|
+ /* x^74752 mod p(x)` << 1, x^74816 mod p(x)` << 1 */
|
||
|
+ { 0x0000000113742d7c, 0x00000001a874f11e },
|
||
|
+ /* x^73728 mod p(x)` << 1, x^73792 mod p(x)` << 1 */
|
||
|
+ { 0x000000019c5920ba, 0x000000010d5a4254 },
|
||
|
+ /* x^72704 mod p(x)` << 1, x^72768 mod p(x)` << 1 */
|
||
|
+ { 0x000000005216d2d6, 0x00000000bbb2f5d6 },
|
||
|
+ /* x^71680 mod p(x)` << 1, x^71744 mod p(x)` << 1 */
|
||
|
+ { 0x0000000136f5ad8a, 0x0000000179cc0e36 },
|
||
|
+ /* x^70656 mod p(x)` << 1, x^70720 mod p(x)` << 1 */
|
||
|
+ { 0x000000018b07beb6, 0x00000001dca1da4a },
|
||
|
+ /* x^69632 mod p(x)` << 1, x^69696 mod p(x)` << 1 */
|
||
|
+ { 0x00000000db1e93b0, 0x00000000feb1a192 },
|
||
|
+ /* x^68608 mod p(x)` << 1, x^68672 mod p(x)` << 1 */
|
||
|
+ { 0x000000000b96fa3a, 0x00000000d1eeedd6 },
|
||
|
+ /* x^67584 mod p(x)` << 1, x^67648 mod p(x)` << 1 */
|
||
|
+ { 0x00000001d9968af0, 0x000000008fad9bb4 },
|
||
|
+ /* x^66560 mod p(x)` << 1, x^66624 mod p(x)` << 1 */
|
||
|
+ { 0x000000000e4a77a2, 0x00000001884938e4 },
|
||
|
+ /* x^65536 mod p(x)` << 1, x^65600 mod p(x)` << 1 */
|
||
|
+ { 0x00000000508c2ac8, 0x00000001bc2e9bc0 },
|
||
|
+ /* x^64512 mod p(x)` << 1, x^64576 mod p(x)` << 1 */
|
||
|
+ { 0x0000000021572a80, 0x00000001f9658a68 },
|
||
|
+ /* x^63488 mod p(x)` << 1, x^63552 mod p(x)` << 1 */
|
||
|
+ { 0x00000001b859daf2, 0x000000001b9224fc },
|
||
|
+ /* x^62464 mod p(x)` << 1, x^62528 mod p(x)` << 1 */
|
||
|
+ { 0x000000016f788474, 0x0000000055b2fb84 },
|
||
|
+ /* x^61440 mod p(x)` << 1, x^61504 mod p(x)` << 1 */
|
||
|
+ { 0x00000001b438810e, 0x000000018b090348 },
|
||
|
+ /* x^60416 mod p(x)` << 1, x^60480 mod p(x)` << 1 */
|
||
|
+ { 0x0000000095ddc6f2, 0x000000011ccbd5ea },
|
||
|
+ /* x^59392 mod p(x)` << 1, x^59456 mod p(x)` << 1 */
|
||
|
+ { 0x00000001d977c20c, 0x0000000007ae47f8 },
|
||
|
+ /* x^58368 mod p(x)` << 1, x^58432 mod p(x)` << 1 */
|
||
|
+ { 0x00000000ebedb99a, 0x0000000172acbec0 },
|
||
|
+ /* x^57344 mod p(x)` << 1, x^57408 mod p(x)` << 1 */
|
||
|
+ { 0x00000001df9e9e92, 0x00000001c6e3ff20 },
|
||
|
+ /* x^56320 mod p(x)` << 1, x^56384 mod p(x)` << 1 */
|
||
|
+ { 0x00000001a4a3f952, 0x00000000e1b38744 },
|
||
|
+ /* x^55296 mod p(x)` << 1, x^55360 mod p(x)` << 1 */
|
||
|
+ { 0x00000000e2f51220, 0x00000000791585b2 },
|
||
|
+ /* x^54272 mod p(x)` << 1, x^54336 mod p(x)` << 1 */
|
||
|
+ { 0x000000004aa01f3e, 0x00000000ac53b894 },
|
||
|
+ /* x^53248 mod p(x)` << 1, x^53312 mod p(x)` << 1 */
|
||
|
+ { 0x00000000b3e90a58, 0x00000001ed5f2cf4 },
|
||
|
+ /* x^52224 mod p(x)` << 1, x^52288 mod p(x)` << 1 */
|
||
|
+ { 0x000000000c9ca2aa, 0x00000001df48b2e0 },
|
||
|
+ /* x^51200 mod p(x)` << 1, x^51264 mod p(x)` << 1 */
|
||
|
+ { 0x0000000151682316, 0x00000000049c1c62 },
|
||
|
+ /* x^50176 mod p(x)` << 1, x^50240 mod p(x)` << 1 */
|
||
|
+ { 0x0000000036fce78c, 0x000000017c460c12 },
|
||
|
+ /* x^49152 mod p(x)` << 1, x^49216 mod p(x)` << 1 */
|
||
|
+ { 0x000000009037dc10, 0x000000015be4da7e },
|
||
|
+ /* x^48128 mod p(x)` << 1, x^48192 mod p(x)` << 1 */
|
||
|
+ { 0x00000000d3298582, 0x000000010f38f668 },
|
||
|
+ /* x^47104 mod p(x)` << 1, x^47168 mod p(x)` << 1 */
|
||
|
+ { 0x00000001b42e8ad6, 0x0000000039f40a00 },
|
||
|
+ /* x^46080 mod p(x)` << 1, x^46144 mod p(x)` << 1 */
|
||
|
+ { 0x00000000142a9838, 0x00000000bd4c10c4 },
|
||
|
+ /* x^45056 mod p(x)` << 1, x^45120 mod p(x)` << 1 */
|
||
|
+ { 0x0000000109c7f190, 0x0000000042db1d98 },
|
||
|
+ /* x^44032 mod p(x)` << 1, x^44096 mod p(x)` << 1 */
|
||
|
+ { 0x0000000056ff9310, 0x00000001c905bae6 },
|
||
|
+ /* x^43008 mod p(x)` << 1, x^43072 mod p(x)` << 1 */
|
||
|
+ { 0x00000001594513aa, 0x00000000069d40ea },
|
||
|
+ /* x^41984 mod p(x)` << 1, x^42048 mod p(x)` << 1 */
|
||
|
+ { 0x00000001e3b5b1e8, 0x000000008e4fbad0 },
|
||
|
+ /* x^40960 mod p(x)` << 1, x^41024 mod p(x)` << 1 */
|
||
|
+ { 0x000000011dd5fc08, 0x0000000047bedd46 },
|
||
|
+ /* x^39936 mod p(x)` << 1, x^40000 mod p(x)` << 1 */
|
||
|
+ { 0x00000001675f0cc2, 0x0000000026396bf8 },
|
||
|
+ /* x^38912 mod p(x)` << 1, x^38976 mod p(x)` << 1 */
|
||
|
+ { 0x00000000d1c8dd44, 0x00000000379beb92 },
|
||
|
+ /* x^37888 mod p(x)` << 1, x^37952 mod p(x)` << 1 */
|
||
|
+ { 0x0000000115ebd3d8, 0x000000000abae54a },
|
||
|
+ /* x^36864 mod p(x)` << 1, x^36928 mod p(x)` << 1 */
|
||
|
+ { 0x00000001ecbd0dac, 0x0000000007e6a128 },
|
||
|
+ /* x^35840 mod p(x)` << 1, x^35904 mod p(x)` << 1 */
|
||
|
+ { 0x00000000cdf67af2, 0x000000000ade29d2 },
|
||
|
+ /* x^34816 mod p(x)` << 1, x^34880 mod p(x)` << 1 */
|
||
|
+ { 0x000000004c01ff4c, 0x00000000f974c45c },
|
||
|
+ /* x^33792 mod p(x)` << 1, x^33856 mod p(x)` << 1 */
|
||
|
+ { 0x00000000f2d8657e, 0x00000000e77ac60a },
|
||
|
+ /* x^32768 mod p(x)` << 1, x^32832 mod p(x)` << 1 */
|
||
|
+ { 0x000000006bae74c4, 0x0000000145895816 },
|
||
|
+ /* x^31744 mod p(x)` << 1, x^31808 mod p(x)` << 1 */
|
||
|
+ { 0x0000000152af8aa0, 0x0000000038e362be },
|
||
|
+ /* x^30720 mod p(x)` << 1, x^30784 mod p(x)` << 1 */
|
||
|
+ { 0x0000000004663802, 0x000000007f991a64 },
|
||
|
+ /* x^29696 mod p(x)` << 1, x^29760 mod p(x)` << 1 */
|
||
|
+ { 0x00000001ab2f5afc, 0x00000000fa366d3a },
|
||
|
+ /* x^28672 mod p(x)` << 1, x^28736 mod p(x)` << 1 */
|
||
|
+ { 0x0000000074a4ebd4, 0x00000001a2bb34f0 },
|
||
|
+ /* x^27648 mod p(x)` << 1, x^27712 mod p(x)` << 1 */
|
||
|
+ { 0x00000001d7ab3a4c, 0x0000000028a9981e },
|
||
|
+ /* x^26624 mod p(x)` << 1, x^26688 mod p(x)` << 1 */
|
||
|
+ { 0x00000001a8da60c6, 0x00000001dbc672be },
|
||
|
+ /* x^25600 mod p(x)` << 1, x^25664 mod p(x)` << 1 */
|
||
|
+ { 0x000000013cf63820, 0x00000000b04d77f6 },
|
||
|
+ /* x^24576 mod p(x)` << 1, x^24640 mod p(x)` << 1 */
|
||
|
+ { 0x00000000bec12e1e, 0x0000000124400d96 },
|
||
|
+ /* x^23552 mod p(x)` << 1, x^23616 mod p(x)` << 1 */
|
||
|
+ { 0x00000001c6368010, 0x000000014ca4b414 },
|
||
|
+ /* x^22528 mod p(x)` << 1, x^22592 mod p(x)` << 1 */
|
||
|
+ { 0x00000001e6e78758, 0x000000012fe2c938 },
|
||
|
+ /* x^21504 mod p(x)` << 1, x^21568 mod p(x)` << 1 */
|
||
|
+ { 0x000000008d7f2b3c, 0x00000001faed01e6 },
|
||
|
+ /* x^20480 mod p(x)` << 1, x^20544 mod p(x)` << 1 */
|
||
|
+ { 0x000000016b4a156e, 0x000000007e80ecfe },
|
||
|
+ /* x^19456 mod p(x)` << 1, x^19520 mod p(x)` << 1 */
|
||
|
+ { 0x00000001c63cfeb6, 0x0000000098daee94 },
|
||
|
+ /* x^18432 mod p(x)` << 1, x^18496 mod p(x)` << 1 */
|
||
|
+ { 0x000000015f902670, 0x000000010a04edea },
|
||
|
+ /* x^17408 mod p(x)` << 1, x^17472 mod p(x)` << 1 */
|
||
|
+ { 0x00000001cd5de11e, 0x00000001c00b4524 },
|
||
|
+ /* x^16384 mod p(x)` << 1, x^16448 mod p(x)` << 1 */
|
||
|
+ { 0x000000001acaec54, 0x0000000170296550 },
|
||
|
+ /* x^15360 mod p(x)` << 1, x^15424 mod p(x)` << 1 */
|
||
|
+ { 0x000000002bd0ca78, 0x0000000181afaa48 },
|
||
|
+ /* x^14336 mod p(x)` << 1, x^14400 mod p(x)` << 1 */
|
||
|
+ { 0x0000000032d63d5c, 0x0000000185a31ffa },
|
||
|
+ /* x^13312 mod p(x)` << 1, x^13376 mod p(x)` << 1 */
|
||
|
+ { 0x000000001c6d4e4c, 0x000000002469f608 },
|
||
|
+ /* x^12288 mod p(x)` << 1, x^12352 mod p(x)` << 1 */
|
||
|
+ { 0x0000000106a60b92, 0x000000006980102a },
|
||
|
+ /* x^11264 mod p(x)` << 1, x^11328 mod p(x)` << 1 */
|
||
|
+ { 0x00000000d3855e12, 0x0000000111ea9ca8 },
|
||
|
+ /* x^10240 mod p(x)` << 1, x^10304 mod p(x)` << 1 */
|
||
|
+ { 0x00000000e3125636, 0x00000001bd1d29ce },
|
||
|
+ /* x^9216 mod p(x)` << 1, x^9280 mod p(x)` << 1 */
|
||
|
+ { 0x000000009e8f7ea4, 0x00000001b34b9580 },
|
||
|
+ /* x^8192 mod p(x)` << 1, x^8256 mod p(x)` << 1 */
|
||
|
+ { 0x00000001c82e562c, 0x000000003076054e },
|
||
|
+ /* x^7168 mod p(x)` << 1, x^7232 mod p(x)` << 1 */
|
||
|
+ { 0x00000000ca9f09ce, 0x000000012a608ea4 },
|
||
|
+ /* x^6144 mod p(x)` << 1, x^6208 mod p(x)` << 1 */
|
||
|
+ { 0x00000000c63764e6, 0x00000000784d05fe },
|
||
|
+ /* x^5120 mod p(x)` << 1, x^5184 mod p(x)` << 1 */
|
||
|
+ { 0x0000000168d2e49e, 0x000000016ef0d82a },
|
||
|
+ /* x^4096 mod p(x)` << 1, x^4160 mod p(x)` << 1 */
|
||
|
+ { 0x00000000e986c148, 0x0000000075bda454 },
|
||
|
+ /* x^3072 mod p(x)` << 1, x^3136 mod p(x)` << 1 */
|
||
|
+ { 0x00000000cfb65894, 0x000000003dc0a1c4 },
|
||
|
+ /* x^2048 mod p(x)` << 1, x^2112 mod p(x)` << 1 */
|
||
|
+ { 0x0000000111cadee4, 0x00000000e9a5d8be },
|
||
|
+ /* x^1024 mod p(x)` << 1, x^1088 mod p(x)` << 1 */
|
||
|
+ { 0x0000000171fb63ce, 0x00000001609bc4b4 }
|
||
|
+#endif /* __LITTLE_ENDIAN__ */
|
||
|
+ };
|
||
|
+
|
||
|
+/* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */
|
||
|
+
|
||
|
+static const __vector unsigned long long vcrc_short_const[16]
|
||
|
+ __attribute__((aligned (16))) = {
|
||
|
+#ifdef __LITTLE_ENDIAN__
|
||
|
+ /* x^1952 mod p(x) , x^1984 mod p(x) , x^2016 mod p(x) , x^2048 mod p(x) */
|
||
|
+ { 0x5cf015c388e56f72, 0x7fec2963e5bf8048 },
|
||
|
+ /* x^1824 mod p(x) , x^1856 mod p(x) , x^1888 mod p(x) , x^1920 mod p(x) */
|
||
|
+ { 0x963a18920246e2e6, 0x38e888d4844752a9 },
|
||
|
+ /* x^1696 mod p(x) , x^1728 mod p(x) , x^1760 mod p(x) , x^1792 mod p(x) */
|
||
|
+ { 0x419a441956993a31, 0x42316c00730206ad },
|
||
|
+ /* x^1568 mod p(x) , x^1600 mod p(x) , x^1632 mod p(x) , x^1664 mod p(x) */
|
||
|
+ { 0x924752ba2b830011, 0x543d5c543e65ddf9 },
|
||
|
+ /* x^1440 mod p(x) , x^1472 mod p(x) , x^1504 mod p(x) , x^1536 mod p(x) */
|
||
|
+ { 0x55bd7f9518e4a304, 0x78e87aaf56767c92 },
|
||
|
+ /* x^1312 mod p(x) , x^1344 mod p(x) , x^1376 mod p(x) , x^1408 mod p(x) */
|
||
|
+ { 0x6d76739fe0553f1e, 0x8f68fcec1903da7f },
|
||
|
+ /* x^1184 mod p(x) , x^1216 mod p(x) , x^1248 mod p(x) , x^1280 mod p(x) */
|
||
|
+ { 0xc133722b1fe0b5c3, 0x3f4840246791d588 },
|
||
|
+ /* x^1056 mod p(x) , x^1088 mod p(x) , x^1120 mod p(x) , x^1152 mod p(x) */
|
||
|
+ { 0x64b67ee0e55ef1f3, 0x34c96751b04de25a },
|
||
|
+ /* x^928 mod p(x) , x^960 mod p(x) , x^992 mod p(x) , x^1024 mod p(x) */
|
||
|
+ { 0x069db049b8fdb1e7, 0x156c8e180b4a395b },
|
||
|
+ /* x^800 mod p(x) , x^832 mod p(x) , x^864 mod p(x) , x^896 mod p(x) */
|
||
|
+ { 0xa11bfaf3c9e90b9e, 0xe0b99ccbe661f7be },
|
||
|
+ /* x^672 mod p(x) , x^704 mod p(x) , x^736 mod p(x) , x^768 mod p(x) */
|
||
|
+ { 0x817cdc5119b29a35, 0x041d37768cd75659 },
|
||
|
+ /* x^544 mod p(x) , x^576 mod p(x) , x^608 mod p(x) , x^640 mod p(x) */
|
||
|
+ { 0x1ce9d94b36c41f1c, 0x3a0777818cfaa965 },
|
||
|
+ /* x^416 mod p(x) , x^448 mod p(x) , x^480 mod p(x) , x^512 mod p(x) */
|
||
|
+ { 0x4f256efcb82be955, 0x0e148e8252377a55 },
|
||
|
+ /* x^288 mod p(x) , x^320 mod p(x) , x^352 mod p(x) , x^384 mod p(x) */
|
||
|
+ { 0xec1631edb2dea967, 0x9c25531d19e65dde },
|
||
|
+ /* x^160 mod p(x) , x^192 mod p(x) , x^224 mod p(x) , x^256 mod p(x) */
|
||
|
+ { 0x5d27e147510ac59a, 0x790606ff9957c0a6 },
|
||
|
+ /* x^32 mod p(x) , x^64 mod p(x) , x^96 mod p(x) , x^128 mod p(x) */
|
||
|
+ { 0xa66805eb18b8ea18, 0x82f63b786ea2d55c }
|
||
|
+#else /* __LITTLE_ENDIAN__ */
|
||
|
+ /* x^1952 mod p(x) , x^1984 mod p(x) , x^2016 mod p(x) , x^2048 mod p(x) */
|
||
|
+ { 0x7fec2963e5bf8048, 0x5cf015c388e56f72 },
|
||
|
+ /* x^1824 mod p(x) , x^1856 mod p(x) , x^1888 mod p(x) , x^1920 mod p(x) */
|
||
|
+ { 0x38e888d4844752a9, 0x963a18920246e2e6 },
|
||
|
+ /* x^1696 mod p(x) , x^1728 mod p(x) , x^1760 mod p(x) , x^1792 mod p(x) */
|
||
|
+ { 0x42316c00730206ad, 0x419a441956993a31 },
|
||
|
+ /* x^1568 mod p(x) , x^1600 mod p(x) , x^1632 mod p(x) , x^1664 mod p(x) */
|
||
|
+ { 0x543d5c543e65ddf9, 0x924752ba2b830011 },
|
||
|
+ /* x^1440 mod p(x) , x^1472 mod p(x) , x^1504 mod p(x) , x^1536 mod p(x) */
|
||
|
+ { 0x78e87aaf56767c92, 0x55bd7f9518e4a304 },
|
||
|
+ /* x^1312 mod p(x) , x^1344 mod p(x) , x^1376 mod p(x) , x^1408 mod p(x) */
|
||
|
+ { 0x8f68fcec1903da7f, 0x6d76739fe0553f1e },
|
||
|
+ /* x^1184 mod p(x) , x^1216 mod p(x) , x^1248 mod p(x) , x^1280 mod p(x) */
|
||
|
+ { 0x3f4840246791d588, 0xc133722b1fe0b5c3 },
|
||
|
+ /* x^1056 mod p(x) , x^1088 mod p(x) , x^1120 mod p(x) , x^1152 mod p(x) */
|
||
|
+ { 0x34c96751b04de25a, 0x64b67ee0e55ef1f3 },
|
||
|
+ /* x^928 mod p(x) , x^960 mod p(x) , x^992 mod p(x) , x^1024 mod p(x) */
|
||
|
+ { 0x156c8e180b4a395b, 0x069db049b8fdb1e7 },
|
||
|
+ /* x^800 mod p(x) , x^832 mod p(x) , x^864 mod p(x) , x^896 mod p(x) */
|
||
|
+ { 0xe0b99ccbe661f7be, 0xa11bfaf3c9e90b9e },
|
||
|
+ /* x^672 mod p(x) , x^704 mod p(x) , x^736 mod p(x) , x^768 mod p(x) */
|
||
|
+ { 0x041d37768cd75659, 0x817cdc5119b29a35 },
|
||
|
+ /* x^544 mod p(x) , x^576 mod p(x) , x^608 mod p(x) , x^640 mod p(x) */
|
||
|
+ { 0x3a0777818cfaa965, 0x1ce9d94b36c41f1c },
|
||
|
+ /* x^416 mod p(x) , x^448 mod p(x) , x^480 mod p(x) , x^512 mod p(x) */
|
||
|
+ { 0x0e148e8252377a55, 0x4f256efcb82be955 },
|
||
|
+ /* x^288 mod p(x) , x^320 mod p(x) , x^352 mod p(x) , x^384 mod p(x) */
|
||
|
+ { 0x9c25531d19e65dde, 0xec1631edb2dea967 },
|
||
|
+ /* x^160 mod p(x) , x^192 mod p(x) , x^224 mod p(x) , x^256 mod p(x) */
|
||
|
+ { 0x790606ff9957c0a6, 0x5d27e147510ac59a },
|
||
|
+ /* x^32 mod p(x) , x^64 mod p(x) , x^96 mod p(x) , x^128 mod p(x) */
|
||
|
+ { 0x82f63b786ea2d55c, 0xa66805eb18b8ea18 }
|
||
|
+#endif /* __LITTLE_ENDIAN__ */
|
||
|
+ };
|
||
|
+
|
||
|
+/* Barrett constants */
|
||
|
+/* 33 bit reflected Barrett constant m - (4^32)/n */
|
||
|
+
|
||
|
+static const __vector unsigned long long v_Barrett_const[2]
|
||
|
+ __attribute__((aligned (16))) = {
|
||
|
+ /* x^64 div p(x) */
|
||
|
+#ifdef __LITTLE_ENDIAN__
|
||
|
+ { 0x00000000dea713f1, 0x0000000000000000 },
|
||
|
+ { 0x0000000105ec76f1, 0x0000000000000000 }
|
||
|
+#else /* __LITTLE_ENDIAN__ */
|
||
|
+ { 0x0000000000000000, 0x00000000dea713f1 },
|
||
|
+ { 0x0000000000000000, 0x0000000105ec76f1 }
|
||
|
+#endif /* __LITTLE_ENDIAN__ */
|
||
|
+ };
|
||
|
+#endif /* POWER8_INTRINSICS */
|
||
|
diff --git a/util/crc32c_test.cc b/util/crc32c_test.cc
|
||
|
index 3e4f7396e7..6fd7d34876 100644
|
||
|
--- a/util/crc32c_test.cc
|
||
|
+++ b/util/crc32c_test.cc
|
||
|
@@ -108,6 +108,9 @@ TEST(CRC, StandardResults) {
|
||
|
EXPECT_EQ(~expected.crc32c, result);
|
||
|
}
|
||
|
|
||
|
+ // NULL buffer
|
||
|
+ EXPECT_EQ((uint32_t) 0, Value(NULL, 0));
|
||
|
+
|
||
|
// Test 2: stitching two computations
|
||
|
for (auto expected : expectedResults) {
|
||
|
size_t partialLength = expected.length / 2;
|