2011-04-29 13:09:26 +02:00
|
|
|
/**
|
2015-10-04 14:28:41 +02:00
|
|
|
* Buildroot wrapper for toolchains. This simply executes the real toolchain
|
|
|
|
* with a number of arguments (sysroot/arch/..) hardcoded, to ensure the
|
|
|
|
* toolchain uses the correct configuration.
|
2012-07-15 03:12:05 +02:00
|
|
|
* The hardcoded path arguments are defined relative to the actual location
|
|
|
|
* of the binary.
|
2011-04-29 13:09:26 +02:00
|
|
|
*
|
|
|
|
* (C) 2011 Peter Korsgaard <jacmet@sunsite.dk>
|
2011-06-21 21:54:27 +02:00
|
|
|
* (C) 2011 Daniel Nyström <daniel.nystrom@timeterminal.se>
|
2012-07-15 03:12:05 +02:00
|
|
|
* (C) 2012 Arnout Vandecappelle (Essensium/Mind) <arnout@mind.be>
|
2013-07-20 01:31:58 +02:00
|
|
|
* (C) 2013 Spenser Gilliland <spenser@gillilanding.com>
|
2011-04-29 13:09:26 +02:00
|
|
|
*
|
|
|
|
* This file is licensed under the terms of the GNU General Public License
|
|
|
|
* version 2. This program is licensed "as is" without any warranty of any
|
|
|
|
* kind, whether express or implied.
|
|
|
|
*/
|
|
|
|
|
2014-12-10 23:53:46 +01:00
|
|
|
#define _GNU_SOURCE
|
2011-04-29 13:09:26 +02:00
|
|
|
#include <stdio.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <limits.h>
|
|
|
|
#include <unistd.h>
|
2011-06-21 21:54:27 +02:00
|
|
|
#include <stdlib.h>
|
2014-12-10 23:53:46 +01:00
|
|
|
#include <errno.h>
|
2016-12-20 14:46:18 +01:00
|
|
|
#include <time.h>
|
2011-04-29 13:09:26 +02:00
|
|
|
|
2015-10-04 17:23:56 +02:00
|
|
|
#ifdef BR_CCACHE
|
|
|
|
static char ccache_path[PATH_MAX];
|
|
|
|
#endif
|
2012-07-15 03:12:05 +02:00
|
|
|
static char path[PATH_MAX];
|
|
|
|
static char sysroot[PATH_MAX];
|
2016-12-20 14:46:18 +01:00
|
|
|
static char source_time[sizeof("-D__TIME__=\"HH:MM:SS\"")];
|
|
|
|
static char source_date[sizeof("-D__DATE__=\"MMM DD YYYY\"")];
|
2011-04-29 13:09:26 +02:00
|
|
|
|
2013-07-20 01:31:58 +02:00
|
|
|
/**
|
|
|
|
* GCC errors out with certain combinations of arguments (examples are
|
2014-04-10 07:46:25 +02:00
|
|
|
* -mfloat-abi={hard|soft} and -m{little|big}-endian), so we have to ensure
|
2013-07-20 01:31:58 +02:00
|
|
|
* that we only pass the predefined one to the real compiler if the inverse
|
|
|
|
* option isn't in the argument list.
|
|
|
|
* This specifies the worst case number of extra arguments we might pass
|
toolchain/external: fix wrapper by not passing conflicting flags
In our wrapper, we forcibly add the -march=, -mcpu= and-mtune= flags
to the actual compiler, this in an attempt to always generate correct
and optimised code for the target.
But in some cases, the caller knows better than we do, and passes its
own set, or subset of those flags. In this case, some may conflict with
the ones we pass. The most prominent offender being the Linux kernel.
For example, on the ARM Raspberry Pi, the Linux kernel will set the
-march=armv6 flag and no -mcpu= flag, but we pass -mcpu=arm1176jzf-s,
which conflicts:
drivers/scsi/scsi_trace.c:1:0: warning: switch -mcpu=arm1176jzf-s
conflicts with -march=armv6 switch
(and so for all the files the kernel compiles, pretty messy)
(note: arm1176jzf-s is not an armv6, it is an armv6zk. Yeah...)
To avoid this situation, we scan our commandline for any occurence of
the possibly conflicting flags. If none is found, then we add our owns.
If any is found, then we don't add any of our owns.
The idea behind this is that we trust the caller to know better than
we do what it is doing. Since the biggest, and sole so far, offender
is the Linux kernel, then this is a rather safe bet.
Signed-off-by: "Yann E. MORIN" <yann.morin.1998@free.fr>
Cc: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Cc: Peter Korsgaard <jacmet@uclibc.org>
Cc: Arnout Vandecappelle <arnout@mind.be>
Cc: Maxime Hadjinlian <maxime.hadjinlian@gmail.com>
Signed-off-by: Peter Korsgaard <peter@korsgaard.com>
2014-01-07 23:46:05 +01:00
|
|
|
* Currently, we have:
|
|
|
|
* -mfloat-abi=
|
|
|
|
* -march=
|
|
|
|
* -mcpu=
|
2016-12-20 14:46:18 +01:00
|
|
|
* -D__TIME__=
|
|
|
|
* -D__DATE__=
|
|
|
|
* -Wno-builtin-macro-redefined
|
2013-07-20 01:31:58 +02:00
|
|
|
*/
|
2016-12-20 14:46:18 +01:00
|
|
|
#define EXCLUSIVE_ARGS 6
|
2013-07-20 01:31:58 +02:00
|
|
|
|
2011-06-21 21:54:27 +02:00
|
|
|
static char *predef_args[] = {
|
2015-10-04 17:23:56 +02:00
|
|
|
#ifdef BR_CCACHE
|
|
|
|
ccache_path,
|
|
|
|
#endif
|
2011-04-29 13:09:26 +02:00
|
|
|
path,
|
2012-07-15 03:12:05 +02:00
|
|
|
"--sysroot", sysroot,
|
2011-04-29 13:09:26 +02:00
|
|
|
#ifdef BR_ABI
|
|
|
|
"-mabi=" BR_ABI,
|
|
|
|
#endif
|
2013-07-20 01:31:57 +02:00
|
|
|
#ifdef BR_FPU
|
arch: introduce BR2_GCC_TARGET_{FPU, FLOAT_ABI}
Buildroot already has the BR2_GCC_TARGET_{TUNE,ARCH,ABI,CPU} hidden
kconfig strings that allow per-architecture Config.in files to feed
the appropriate values of --with-{tune,arch,abi-cpu} when building
gcc, or the appropriate flags for the external toolchain wrapper.
This commit has two additional options:
BR2_GCC_TARGET_{FPU,FLOAT_ABI}, that allows to define the
--with-{fpu,float} gcc configure options for the internal backend, or
the -m{fpu,float-abi} options for the flags of the external toolchain
wrapper.
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Signed-off-by: Peter Korsgaard <jacmet@sunsite.dk>
2013-07-16 10:03:12 +02:00
|
|
|
"-mfpu=" BR_FPU,
|
|
|
|
#endif
|
2011-04-29 13:09:26 +02:00
|
|
|
#ifdef BR_SOFTFLOAT
|
|
|
|
"-msoft-float",
|
|
|
|
#endif /* BR_SOFTFLOAT */
|
2013-07-16 10:03:22 +02:00
|
|
|
#ifdef BR_MODE
|
|
|
|
"-m" BR_MODE,
|
|
|
|
#endif
|
2012-03-13 23:30:00 +01:00
|
|
|
#ifdef BR_64
|
|
|
|
"-m64",
|
|
|
|
#endif
|
2015-10-19 13:02:52 +02:00
|
|
|
#ifdef BR_OMIT_LOCK_PREFIX
|
|
|
|
"-Wa,-momit-lock-prefix=yes",
|
|
|
|
#endif
|
2016-11-09 17:16:57 +01:00
|
|
|
#ifdef BR_NO_FUSED_MADD
|
|
|
|
"-mno-fused-madd",
|
|
|
|
#endif
|
2013-05-03 02:39:34 +02:00
|
|
|
#ifdef BR_BINFMT_FLAT
|
|
|
|
"-Wl,-elf2flt",
|
|
|
|
#endif
|
2013-10-14 11:52:25 +02:00
|
|
|
#ifdef BR_MIPS_TARGET_LITTLE_ENDIAN
|
|
|
|
"-EL",
|
|
|
|
#endif
|
2015-03-10 12:50:24 +01:00
|
|
|
#if defined(BR_MIPS_TARGET_BIG_ENDIAN) || defined(BR_ARC_TARGET_BIG_ENDIAN)
|
2013-10-14 11:52:25 +02:00
|
|
|
"-EB",
|
|
|
|
#endif
|
2011-12-31 12:09:33 +01:00
|
|
|
#ifdef BR_ADDITIONAL_CFLAGS
|
|
|
|
BR_ADDITIONAL_CFLAGS
|
|
|
|
#endif
|
2011-04-29 13:09:26 +02:00
|
|
|
};
|
|
|
|
|
2016-12-04 10:21:55 +01:00
|
|
|
/* A {string,length} tuple, to avoid computing strlen() on constants.
|
|
|
|
* - str must be a \0-terminated string
|
|
|
|
* - len does not account for the terminating '\0'
|
|
|
|
*/
|
|
|
|
struct str_len_s {
|
|
|
|
const char *str;
|
toolchain/wrapper: extend paranoid check to -isystem
Some packages, like libbsd, use -isystem flags to provide so-called
overrides to the system include files. In this particular case, this
is used in a .pc file, then used by antoher package; pkgconf does not
mangle this path; and eventually that other package ends up using
/usr/include/bsd to search for headers.
Our current toolchain wrapper is limited to looking for -I and -L, so
the paranoid check does not kick in.
Furthermore, as noticed by Arnout, there might be a bunch of other
so-unsafe options: -isysroot, -imultilib, -iquote, -idirafter, -iprefix,
-iwithprefix, -iwithprefixbefore; even -B and --sysroot are unsafe.
Extend the paranoid check to be able to check any arbitrary number of
potentially unsafe options:
- add a list of options to check for, each with their length,
- iterate over this list until we find a matching unsafe option.
Compared to previously, the list of options include -I and -L (which we
already had) extended with -idirafter, -iquote and -isystem, but leaving
all the others noticed by Arnout away, until we have a reason for
handling them.
Signed-off-by: "Yann E. MORIN" <yann.morin.1998@free.fr>
Cc: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Cc: Arnout Vandecappelle <arnout@mind.be>
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
2016-08-29 17:53:59 +02:00
|
|
|
size_t len;
|
|
|
|
};
|
|
|
|
|
2016-12-04 10:21:55 +01:00
|
|
|
/* Define a {string,length} tuple. Takes an unquoted constant string as
|
|
|
|
* parameter. sizeof() on a string literal includes the terminating \0,
|
|
|
|
* but we don't want to count it.
|
|
|
|
*/
|
|
|
|
#define STR_LEN(s) { #s, sizeof(#s)-1 }
|
|
|
|
|
2016-12-04 10:21:56 +01:00
|
|
|
/* List of paths considered unsafe for cross-compilation.
|
|
|
|
*
|
|
|
|
* An unsafe path is one that points to a directory with libraries or
|
|
|
|
* headers for the build machine, which are not suitable for the target.
|
|
|
|
*/
|
|
|
|
static const struct str_len_s unsafe_paths[] = {
|
|
|
|
STR_LEN(/lib),
|
|
|
|
STR_LEN(/usr/include),
|
|
|
|
STR_LEN(/usr/lib),
|
|
|
|
STR_LEN(/usr/local/include),
|
|
|
|
STR_LEN(/usr/local/lib),
|
|
|
|
{ NULL, 0 },
|
|
|
|
};
|
|
|
|
|
toolchain/wrapper: extend paranoid check to -isystem
Some packages, like libbsd, use -isystem flags to provide so-called
overrides to the system include files. In this particular case, this
is used in a .pc file, then used by antoher package; pkgconf does not
mangle this path; and eventually that other package ends up using
/usr/include/bsd to search for headers.
Our current toolchain wrapper is limited to looking for -I and -L, so
the paranoid check does not kick in.
Furthermore, as noticed by Arnout, there might be a bunch of other
so-unsafe options: -isysroot, -imultilib, -iquote, -idirafter, -iprefix,
-iwithprefix, -iwithprefixbefore; even -B and --sysroot are unsafe.
Extend the paranoid check to be able to check any arbitrary number of
potentially unsafe options:
- add a list of options to check for, each with their length,
- iterate over this list until we find a matching unsafe option.
Compared to previously, the list of options include -I and -L (which we
already had) extended with -idirafter, -iquote and -isystem, but leaving
all the others noticed by Arnout away, until we have a reason for
handling them.
Signed-off-by: "Yann E. MORIN" <yann.morin.1998@free.fr>
Cc: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Cc: Arnout Vandecappelle <arnout@mind.be>
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
2016-08-29 17:53:59 +02:00
|
|
|
/* Unsafe options are options that specify a potentialy unsafe path,
|
|
|
|
* that will be checked by check_unsafe_path(), below.
|
|
|
|
*/
|
2016-12-04 10:21:55 +01:00
|
|
|
static const struct str_len_s unsafe_opts[] = {
|
|
|
|
STR_LEN(-I),
|
|
|
|
STR_LEN(-idirafter),
|
|
|
|
STR_LEN(-iquote),
|
|
|
|
STR_LEN(-isystem),
|
|
|
|
STR_LEN(-L),
|
toolchain/wrapper: extend paranoid check to -isystem
Some packages, like libbsd, use -isystem flags to provide so-called
overrides to the system include files. In this particular case, this
is used in a .pc file, then used by antoher package; pkgconf does not
mangle this path; and eventually that other package ends up using
/usr/include/bsd to search for headers.
Our current toolchain wrapper is limited to looking for -I and -L, so
the paranoid check does not kick in.
Furthermore, as noticed by Arnout, there might be a bunch of other
so-unsafe options: -isysroot, -imultilib, -iquote, -idirafter, -iprefix,
-iwithprefix, -iwithprefixbefore; even -B and --sysroot are unsafe.
Extend the paranoid check to be able to check any arbitrary number of
potentially unsafe options:
- add a list of options to check for, each with their length,
- iterate over this list until we find a matching unsafe option.
Compared to previously, the list of options include -I and -L (which we
already had) extended with -idirafter, -iquote and -isystem, but leaving
all the others noticed by Arnout away, until we have a reason for
handling them.
Signed-off-by: "Yann E. MORIN" <yann.morin.1998@free.fr>
Cc: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Cc: Arnout Vandecappelle <arnout@mind.be>
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
2016-08-29 17:53:59 +02:00
|
|
|
{ NULL, 0 },
|
|
|
|
};
|
|
|
|
|
2016-08-29 17:53:58 +02:00
|
|
|
/* Check if path is unsafe for cross-compilation. Unsafe paths are those
|
|
|
|
* pointing to the standard native include or library paths.
|
|
|
|
*
|
|
|
|
* We print the arguments leading to the failure. For some options, gcc
|
|
|
|
* accepts the path to be concatenated to the argument (e.g. -I/foo/bar)
|
|
|
|
* or separated (e.g. -I /foo/bar). In the first case, we need only print
|
|
|
|
* the argument as it already contains the path (arg_has_path), while in
|
|
|
|
* the second case we need to print both (!arg_has_path).
|
|
|
|
*
|
|
|
|
* If paranoid, exit in error instead of just printing a warning.
|
|
|
|
*/
|
|
|
|
static void check_unsafe_path(const char *arg,
|
|
|
|
const char *path,
|
|
|
|
int paranoid,
|
|
|
|
int arg_has_path)
|
2014-12-10 23:53:46 +01:00
|
|
|
{
|
2016-12-04 10:21:56 +01:00
|
|
|
const struct str_len_s *p;
|
2014-12-10 23:53:46 +01:00
|
|
|
|
2016-12-04 10:21:56 +01:00
|
|
|
for (p=unsafe_paths; p->str; p++) {
|
|
|
|
if (strncmp(path, p->str, p->len))
|
2014-12-10 23:53:46 +01:00
|
|
|
continue;
|
2016-08-29 17:53:58 +02:00
|
|
|
fprintf(stderr,
|
|
|
|
"%s: %s: unsafe header/library path used in cross-compilation: '%s%s%s'\n",
|
|
|
|
program_invocation_short_name,
|
|
|
|
paranoid ? "ERROR" : "WARNING",
|
|
|
|
arg,
|
|
|
|
arg_has_path ? "" : "' '", /* close single-quote, space, open single-quote */
|
|
|
|
arg_has_path ? "" : path); /* so that arg and path are properly quoted. */
|
|
|
|
if (paranoid)
|
|
|
|
exit(1);
|
2014-12-10 23:53:46 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-12-20 14:46:18 +01:00
|
|
|
/* Read SOURCE_DATE_EPOCH from environment to have a deterministic
|
|
|
|
* timestamp to replace embedded current dates to get reproducible
|
|
|
|
* results. Returns -1 if SOURCE_DATE_EPOCH is not defined.
|
|
|
|
*/
|
|
|
|
static time_t get_source_date_epoch()
|
|
|
|
{
|
|
|
|
char *source_date_epoch;
|
|
|
|
long long epoch;
|
|
|
|
char *endptr;
|
|
|
|
|
|
|
|
source_date_epoch = getenv("SOURCE_DATE_EPOCH");
|
|
|
|
if (!source_date_epoch)
|
|
|
|
return (time_t) -1;
|
|
|
|
|
|
|
|
errno = 0;
|
|
|
|
epoch = strtoll(source_date_epoch, &endptr, 10);
|
|
|
|
if ((errno == ERANGE && (epoch == LLONG_MAX || epoch == LLONG_MIN))
|
|
|
|
|| (errno != 0 && epoch == 0)) {
|
|
|
|
fprintf(stderr, "environment variable $SOURCE_DATE_EPOCH: "
|
|
|
|
"strtoll: %s\n", strerror(errno));
|
|
|
|
exit(2);
|
|
|
|
}
|
|
|
|
if (endptr == source_date_epoch) {
|
|
|
|
fprintf(stderr, "environment variable $SOURCE_DATE_EPOCH: "
|
|
|
|
"no digits were found: %s\n", endptr);
|
|
|
|
exit(2);
|
|
|
|
}
|
|
|
|
if (*endptr != '\0') {
|
|
|
|
fprintf(stderr, "environment variable $SOURCE_DATE_EPOCH: "
|
|
|
|
"trailing garbage: %s\n", endptr);
|
|
|
|
exit(2);
|
|
|
|
}
|
|
|
|
if (epoch < 0) {
|
|
|
|
fprintf(stderr, "environment variable $SOURCE_DATE_EPOCH: "
|
|
|
|
"value must be nonnegative: %lld \n", epoch);
|
|
|
|
exit(2);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (time_t) epoch;
|
|
|
|
}
|
|
|
|
|
2011-04-29 13:09:26 +02:00
|
|
|
int main(int argc, char **argv)
|
|
|
|
{
|
2015-10-04 14:28:56 +02:00
|
|
|
char **args, **cur, **exec_args;
|
2012-07-15 03:12:05 +02:00
|
|
|
char *relbasedir, *absbasedir;
|
|
|
|
char *progpath = argv[0];
|
|
|
|
char *basename;
|
2013-09-21 00:00:30 +02:00
|
|
|
char *env_debug;
|
2014-12-10 23:53:46 +01:00
|
|
|
char *paranoid_wrapper;
|
|
|
|
int paranoid;
|
2013-09-21 00:00:30 +02:00
|
|
|
int ret, i, count = 0, debug;
|
2016-12-20 14:46:18 +01:00
|
|
|
time_t source_date_epoch;
|
2012-07-15 03:12:05 +02:00
|
|
|
|
|
|
|
/* Calculate the relative paths */
|
|
|
|
basename = strrchr(progpath, '/');
|
|
|
|
if (basename) {
|
|
|
|
*basename = '\0';
|
|
|
|
basename++;
|
|
|
|
relbasedir = malloc(strlen(progpath) + 7);
|
|
|
|
if (relbasedir == NULL) {
|
|
|
|
perror(__FILE__ ": malloc");
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
sprintf(relbasedir, "%s/../..", argv[0]);
|
|
|
|
absbasedir = realpath(relbasedir, NULL);
|
|
|
|
} else {
|
|
|
|
basename = progpath;
|
2013-05-29 01:41:19 +02:00
|
|
|
absbasedir = malloc(PATH_MAX + 1);
|
|
|
|
ret = readlink("/proc/self/exe", absbasedir, PATH_MAX);
|
|
|
|
if (ret < 0) {
|
|
|
|
perror(__FILE__ ": readlink");
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
absbasedir[ret] = '\0';
|
|
|
|
for (i = ret; i > 0; i--) {
|
|
|
|
if (absbasedir[i] == '/') {
|
|
|
|
absbasedir[i] = '\0';
|
|
|
|
if (++count == 3)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2012-07-15 03:12:05 +02:00
|
|
|
}
|
|
|
|
if (absbasedir == NULL) {
|
|
|
|
perror(__FILE__ ": realpath");
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Fill in the relative paths */
|
|
|
|
#ifdef BR_CROSS_PATH_REL
|
2015-10-14 23:05:55 +02:00
|
|
|
ret = snprintf(path, sizeof(path), "%s/" BR_CROSS_PATH_REL "/%s" BR_CROSS_PATH_SUFFIX, absbasedir, basename);
|
2015-10-05 08:25:17 +02:00
|
|
|
#elif defined(BR_CROSS_PATH_ABS)
|
2015-10-14 23:05:55 +02:00
|
|
|
ret = snprintf(path, sizeof(path), BR_CROSS_PATH_ABS "/%s" BR_CROSS_PATH_SUFFIX, basename);
|
|
|
|
#else
|
gcc: use toolchain wrapper
We have a toolchain wrapper for external toolchain, but it is also
beneficial for internal toolchains, for the following reasons:
1. It can make sure that BR2_TARGET_OPTIMIZATION is passed to the
compiler even if a package's build system doesn't honor CFLAGS.
2. It allows us to do the unsafe path check (i.e. -I/usr/include)
without patching gcc.
3. It makes it simpler to implement building each package with a
separate staging directory (per-package staging).
4. It makes it simpler to implement a compiler hash check for ccache.
The wrapper is reused from the external toolchain. A third CROSS_PATH_
option is added to the wrapper: in this case, the real executable is in
the same directory, with the extension .real.
The creation of the simple symlinks is merged with the creation of the
wrapper symlinks, otherwise part of the -gcc-ar handling logic would
have to be repeated.
The complex case-condition could be refactored with the one for the
external toolchain, but then it becomes even more complex because
they each have special corner cases. For example, the internal
toolchain has to handle *.real to avoid creating an extra indirection
after host-gcc-{final,initial}-rebuild.
Instead of creating the .real files, it would also have been possible
to install the internal toolchain in $(HOST_DIR)/opt, similar to what
we do for the external toolchain. However, then we would also have to
copy things to the sysroot and do more of the magic that the external
toolchain is doing. So keeping it in $(HOST_DIR)/usr/bin is much
simpler.
Note that gcc-initial has to be wrapped as well, because it is used for
building libc and we want to apply the same magic when building libc.
Signed-off-by: Arnout Vandecappelle (Essensium/Mind) <arnout@mind.be>
Cc: Fabio Porcedda <fabio.porcedda@gmail.com>
Cc: Jérôme Oufella <jerome.oufella@savoirfairelinux.com>
Reviewed-by: Romain Naour <romain.naour@openwide.fr>
Signed-off-by: Peter Korsgaard <peter@korsgaard.com>
2015-10-04 14:28:42 +02:00
|
|
|
ret = snprintf(path, sizeof(path), "%s/usr/bin/%s" BR_CROSS_PATH_SUFFIX, absbasedir, basename);
|
2012-07-15 03:12:05 +02:00
|
|
|
#endif
|
|
|
|
if (ret >= sizeof(path)) {
|
|
|
|
perror(__FILE__ ": overflow");
|
|
|
|
return 3;
|
|
|
|
}
|
2015-10-04 17:23:56 +02:00
|
|
|
#ifdef BR_CCACHE
|
|
|
|
ret = snprintf(ccache_path, sizeof(ccache_path), "%s/usr/bin/ccache", absbasedir);
|
|
|
|
if (ret >= sizeof(ccache_path)) {
|
|
|
|
perror(__FILE__ ": overflow");
|
|
|
|
return 3;
|
|
|
|
}
|
|
|
|
#endif
|
2012-07-15 03:12:05 +02:00
|
|
|
ret = snprintf(sysroot, sizeof(sysroot), "%s/" BR_SYSROOT, absbasedir);
|
|
|
|
if (ret >= sizeof(sysroot)) {
|
|
|
|
perror(__FILE__ ": overflow");
|
|
|
|
return 3;
|
|
|
|
}
|
2011-04-29 13:09:26 +02:00
|
|
|
|
2013-07-20 01:31:58 +02:00
|
|
|
cur = args = malloc(sizeof(predef_args) +
|
|
|
|
(sizeof(char *) * (argc + EXCLUSIVE_ARGS)));
|
2011-06-21 21:54:27 +02:00
|
|
|
if (args == NULL) {
|
|
|
|
perror(__FILE__ ": malloc");
|
|
|
|
return 2;
|
2011-04-29 13:09:26 +02:00
|
|
|
}
|
|
|
|
|
2011-06-21 21:54:27 +02:00
|
|
|
/* start with predefined args */
|
|
|
|
memcpy(cur, predef_args, sizeof(predef_args));
|
|
|
|
cur += sizeof(predef_args) / sizeof(predef_args[0]);
|
|
|
|
|
2013-07-20 01:31:58 +02:00
|
|
|
#ifdef BR_FLOAT_ABI
|
|
|
|
/* add float abi if not overridden in args */
|
|
|
|
for (i = 1; i < argc; i++) {
|
|
|
|
if (!strncmp(argv[i], "-mfloat-abi=", strlen("-mfloat-abi=")) ||
|
|
|
|
!strcmp(argv[i], "-msoft-float") ||
|
|
|
|
!strcmp(argv[i], "-mhard-float"))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i == argc)
|
|
|
|
*cur++ = "-mfloat-abi=" BR_FLOAT_ABI;
|
|
|
|
#endif
|
|
|
|
|
toolchain/external: fix wrapper by not passing conflicting flags
In our wrapper, we forcibly add the -march=, -mcpu= and-mtune= flags
to the actual compiler, this in an attempt to always generate correct
and optimised code for the target.
But in some cases, the caller knows better than we do, and passes its
own set, or subset of those flags. In this case, some may conflict with
the ones we pass. The most prominent offender being the Linux kernel.
For example, on the ARM Raspberry Pi, the Linux kernel will set the
-march=armv6 flag and no -mcpu= flag, but we pass -mcpu=arm1176jzf-s,
which conflicts:
drivers/scsi/scsi_trace.c:1:0: warning: switch -mcpu=arm1176jzf-s
conflicts with -march=armv6 switch
(and so for all the files the kernel compiles, pretty messy)
(note: arm1176jzf-s is not an armv6, it is an armv6zk. Yeah...)
To avoid this situation, we scan our commandline for any occurence of
the possibly conflicting flags. If none is found, then we add our owns.
If any is found, then we don't add any of our owns.
The idea behind this is that we trust the caller to know better than
we do what it is doing. Since the biggest, and sole so far, offender
is the Linux kernel, then this is a rather safe bet.
Signed-off-by: "Yann E. MORIN" <yann.morin.1998@free.fr>
Cc: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Cc: Peter Korsgaard <jacmet@uclibc.org>
Cc: Arnout Vandecappelle <arnout@mind.be>
Cc: Maxime Hadjinlian <maxime.hadjinlian@gmail.com>
Signed-off-by: Peter Korsgaard <peter@korsgaard.com>
2014-01-07 23:46:05 +01:00
|
|
|
#if defined(BR_ARCH) || \
|
|
|
|
defined(BR_CPU)
|
2015-07-26 12:53:07 +02:00
|
|
|
/* Add our -march/cpu flags, but only if none of
|
|
|
|
* -march/mtune/mcpu are already specified on the commandline
|
toolchain/external: fix wrapper by not passing conflicting flags
In our wrapper, we forcibly add the -march=, -mcpu= and-mtune= flags
to the actual compiler, this in an attempt to always generate correct
and optimised code for the target.
But in some cases, the caller knows better than we do, and passes its
own set, or subset of those flags. In this case, some may conflict with
the ones we pass. The most prominent offender being the Linux kernel.
For example, on the ARM Raspberry Pi, the Linux kernel will set the
-march=armv6 flag and no -mcpu= flag, but we pass -mcpu=arm1176jzf-s,
which conflicts:
drivers/scsi/scsi_trace.c:1:0: warning: switch -mcpu=arm1176jzf-s
conflicts with -march=armv6 switch
(and so for all the files the kernel compiles, pretty messy)
(note: arm1176jzf-s is not an armv6, it is an armv6zk. Yeah...)
To avoid this situation, we scan our commandline for any occurence of
the possibly conflicting flags. If none is found, then we add our owns.
If any is found, then we don't add any of our owns.
The idea behind this is that we trust the caller to know better than
we do what it is doing. Since the biggest, and sole so far, offender
is the Linux kernel, then this is a rather safe bet.
Signed-off-by: "Yann E. MORIN" <yann.morin.1998@free.fr>
Cc: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Cc: Peter Korsgaard <jacmet@uclibc.org>
Cc: Arnout Vandecappelle <arnout@mind.be>
Cc: Maxime Hadjinlian <maxime.hadjinlian@gmail.com>
Signed-off-by: Peter Korsgaard <peter@korsgaard.com>
2014-01-07 23:46:05 +01:00
|
|
|
*/
|
|
|
|
for (i = 1; i < argc; i++) {
|
|
|
|
if (!strncmp(argv[i], "-march=", strlen("-march=")) ||
|
2015-07-26 12:53:07 +02:00
|
|
|
!strncmp(argv[i], "-mtune=", strlen("-mtune=")) ||
|
toolchain/external: fix wrapper by not passing conflicting flags
In our wrapper, we forcibly add the -march=, -mcpu= and-mtune= flags
to the actual compiler, this in an attempt to always generate correct
and optimised code for the target.
But in some cases, the caller knows better than we do, and passes its
own set, or subset of those flags. In this case, some may conflict with
the ones we pass. The most prominent offender being the Linux kernel.
For example, on the ARM Raspberry Pi, the Linux kernel will set the
-march=armv6 flag and no -mcpu= flag, but we pass -mcpu=arm1176jzf-s,
which conflicts:
drivers/scsi/scsi_trace.c:1:0: warning: switch -mcpu=arm1176jzf-s
conflicts with -march=armv6 switch
(and so for all the files the kernel compiles, pretty messy)
(note: arm1176jzf-s is not an armv6, it is an armv6zk. Yeah...)
To avoid this situation, we scan our commandline for any occurence of
the possibly conflicting flags. If none is found, then we add our owns.
If any is found, then we don't add any of our owns.
The idea behind this is that we trust the caller to know better than
we do what it is doing. Since the biggest, and sole so far, offender
is the Linux kernel, then this is a rather safe bet.
Signed-off-by: "Yann E. MORIN" <yann.morin.1998@free.fr>
Cc: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Cc: Peter Korsgaard <jacmet@uclibc.org>
Cc: Arnout Vandecappelle <arnout@mind.be>
Cc: Maxime Hadjinlian <maxime.hadjinlian@gmail.com>
Signed-off-by: Peter Korsgaard <peter@korsgaard.com>
2014-01-07 23:46:05 +01:00
|
|
|
!strncmp(argv[i], "-mcpu=", strlen("-mcpu=" )))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (i == argc) {
|
|
|
|
#ifdef BR_ARCH
|
|
|
|
*cur++ = "-march=" BR_ARCH;
|
|
|
|
#endif
|
|
|
|
#ifdef BR_CPU
|
|
|
|
*cur++ = "-mcpu=" BR_CPU;
|
|
|
|
#endif
|
|
|
|
}
|
2014-10-21 22:27:16 +02:00
|
|
|
#endif /* ARCH || CPU */
|
toolchain/external: fix wrapper by not passing conflicting flags
In our wrapper, we forcibly add the -march=, -mcpu= and-mtune= flags
to the actual compiler, this in an attempt to always generate correct
and optimised code for the target.
But in some cases, the caller knows better than we do, and passes its
own set, or subset of those flags. In this case, some may conflict with
the ones we pass. The most prominent offender being the Linux kernel.
For example, on the ARM Raspberry Pi, the Linux kernel will set the
-march=armv6 flag and no -mcpu= flag, but we pass -mcpu=arm1176jzf-s,
which conflicts:
drivers/scsi/scsi_trace.c:1:0: warning: switch -mcpu=arm1176jzf-s
conflicts with -march=armv6 switch
(and so for all the files the kernel compiles, pretty messy)
(note: arm1176jzf-s is not an armv6, it is an armv6zk. Yeah...)
To avoid this situation, we scan our commandline for any occurence of
the possibly conflicting flags. If none is found, then we add our owns.
If any is found, then we don't add any of our owns.
The idea behind this is that we trust the caller to know better than
we do what it is doing. Since the biggest, and sole so far, offender
is the Linux kernel, then this is a rather safe bet.
Signed-off-by: "Yann E. MORIN" <yann.morin.1998@free.fr>
Cc: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Cc: Peter Korsgaard <jacmet@uclibc.org>
Cc: Arnout Vandecappelle <arnout@mind.be>
Cc: Maxime Hadjinlian <maxime.hadjinlian@gmail.com>
Signed-off-by: Peter Korsgaard <peter@korsgaard.com>
2014-01-07 23:46:05 +01:00
|
|
|
|
2016-12-20 14:46:18 +01:00
|
|
|
source_date_epoch = get_source_date_epoch();
|
|
|
|
if (source_date_epoch != -1) {
|
|
|
|
struct tm *tm = localtime(&source_date_epoch);
|
|
|
|
if (!tm) {
|
|
|
|
perror("__FILE__: localtime");
|
|
|
|
return 3;
|
|
|
|
}
|
|
|
|
ret = strftime(source_time, sizeof(source_time), "-D__TIME__=\"%T\"", tm);
|
|
|
|
if (!ret) {
|
|
|
|
perror("__FILE__: overflow");
|
|
|
|
return 3;
|
|
|
|
}
|
|
|
|
*cur++ = source_time;
|
|
|
|
ret = strftime(source_date, sizeof(source_date), "-D__DATE__=\"%b %e %Y\"", tm);
|
|
|
|
if (!ret) {
|
|
|
|
perror("__FILE__: overflow");
|
|
|
|
return 3;
|
|
|
|
}
|
|
|
|
*cur++ = source_date;
|
|
|
|
*cur++ = "-Wno-builtin-macro-redefined";
|
|
|
|
}
|
|
|
|
|
2014-12-10 23:53:46 +01:00
|
|
|
paranoid_wrapper = getenv("BR_COMPILER_PARANOID_UNSAFE_PATH");
|
|
|
|
if (paranoid_wrapper && strlen(paranoid_wrapper) > 0)
|
|
|
|
paranoid = 1;
|
|
|
|
else
|
|
|
|
paranoid = 0;
|
|
|
|
|
|
|
|
/* Check for unsafe library and header paths */
|
|
|
|
for (i = 1; i < argc; i++) {
|
2016-12-04 10:21:55 +01:00
|
|
|
const struct str_len_s *opt;
|
|
|
|
for (opt=unsafe_opts; opt->str; opt++ ) {
|
toolchain/wrapper: extend paranoid check to -isystem
Some packages, like libbsd, use -isystem flags to provide so-called
overrides to the system include files. In this particular case, this
is used in a .pc file, then used by antoher package; pkgconf does not
mangle this path; and eventually that other package ends up using
/usr/include/bsd to search for headers.
Our current toolchain wrapper is limited to looking for -I and -L, so
the paranoid check does not kick in.
Furthermore, as noticed by Arnout, there might be a bunch of other
so-unsafe options: -isysroot, -imultilib, -iquote, -idirafter, -iprefix,
-iwithprefix, -iwithprefixbefore; even -B and --sysroot are unsafe.
Extend the paranoid check to be able to check any arbitrary number of
potentially unsafe options:
- add a list of options to check for, each with their length,
- iterate over this list until we find a matching unsafe option.
Compared to previously, the list of options include -I and -L (which we
already had) extended with -idirafter, -iquote and -isystem, but leaving
all the others noticed by Arnout away, until we have a reason for
handling them.
Signed-off-by: "Yann E. MORIN" <yann.morin.1998@free.fr>
Cc: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Cc: Arnout Vandecappelle <arnout@mind.be>
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
2016-08-29 17:53:59 +02:00
|
|
|
/* Skip any non-unsafe option. */
|
2016-12-04 10:21:55 +01:00
|
|
|
if (strncmp(argv[i], opt->str, opt->len))
|
2014-12-10 23:53:46 +01:00
|
|
|
continue;
|
toolchain/wrapper: extend paranoid check to -isystem
Some packages, like libbsd, use -isystem flags to provide so-called
overrides to the system include files. In this particular case, this
is used in a .pc file, then used by antoher package; pkgconf does not
mangle this path; and eventually that other package ends up using
/usr/include/bsd to search for headers.
Our current toolchain wrapper is limited to looking for -I and -L, so
the paranoid check does not kick in.
Furthermore, as noticed by Arnout, there might be a bunch of other
so-unsafe options: -isysroot, -imultilib, -iquote, -idirafter, -iprefix,
-iwithprefix, -iwithprefixbefore; even -B and --sysroot are unsafe.
Extend the paranoid check to be able to check any arbitrary number of
potentially unsafe options:
- add a list of options to check for, each with their length,
- iterate over this list until we find a matching unsafe option.
Compared to previously, the list of options include -I and -L (which we
already had) extended with -idirafter, -iquote and -isystem, but leaving
all the others noticed by Arnout away, until we have a reason for
handling them.
Signed-off-by: "Yann E. MORIN" <yann.morin.1998@free.fr>
Cc: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Cc: Arnout Vandecappelle <arnout@mind.be>
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
2016-08-29 17:53:59 +02:00
|
|
|
|
|
|
|
/* Handle both cases:
|
|
|
|
* - path is a separate argument,
|
|
|
|
* - path is concatenated with option.
|
|
|
|
*/
|
|
|
|
if (argv[i][opt->len] == '\0') {
|
|
|
|
i++;
|
|
|
|
if (i == argc)
|
|
|
|
break;
|
|
|
|
check_unsafe_path(argv[i-1], argv[i], paranoid, 0);
|
|
|
|
} else
|
|
|
|
check_unsafe_path(argv[i], argv[i] + opt->len, paranoid, 1);
|
2014-12-10 23:53:46 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-06-21 21:54:27 +02:00
|
|
|
/* append forward args */
|
|
|
|
memcpy(cur, &argv[1], sizeof(char *) * (argc - 1));
|
|
|
|
cur += argc - 1;
|
|
|
|
|
|
|
|
/* finish with NULL termination */
|
|
|
|
*cur = NULL;
|
2011-04-29 13:09:26 +02:00
|
|
|
|
2015-10-04 14:28:56 +02:00
|
|
|
exec_args = args;
|
|
|
|
#ifdef BR_CCACHE
|
|
|
|
if (getenv("BR_NO_CCACHE"))
|
|
|
|
/* Skip the ccache call */
|
|
|
|
exec_args++;
|
|
|
|
#endif
|
|
|
|
|
2013-09-21 00:00:30 +02:00
|
|
|
/* Debug the wrapper to see actual arguments passed to
|
|
|
|
* the compiler:
|
|
|
|
* unset, empty, or 0: do not trace
|
|
|
|
* set to 1 : trace all arguments on a single line
|
|
|
|
* set to 2 : trace one argument per line
|
|
|
|
*/
|
2014-03-03 23:55:05 +01:00
|
|
|
if ((env_debug = getenv("BR2_DEBUG_WRAPPER"))) {
|
2013-09-21 00:00:30 +02:00
|
|
|
debug = atoi(env_debug);
|
|
|
|
if (debug > 0) {
|
|
|
|
fprintf(stderr, "Toolchain wrapper executing:");
|
ccache: use mtime for external toolchain, CONF_OPTS for internal toolchain
Our current ccache disables hashing of the compiler executable itself,
because using the default 'mtime' doesn't work in buildroot: we always
rebuild the compiler, so the mtime is always different, so the cache
always misses.
However, in the current situation, if a user changes the compiler
configuration (which would result in the compiler generating different
object files than before) and does 'make clean all', ccache may in fact
reuse object files from the previous run. This rarely gives problems,
because
(1) the cache expires quite quickly (it's only 1GB by default),
(2) radically changing compiler options will cause cache misses because
different header files are used,
(3) many compiler changes (e.g. changing -mtune) have little practical
effect because the resulting code is usually still compatible,
(4) we currently don't use CCACHE_BASEDIR, and almost all object files
will contain an absolute path (e.g. in debug info), so when
building in a different directory, most of it will miss,
(5) we do mostly build test, and many of the potential problems only
appear at runtime.
Still, when ccache _does_ use the wrong cached object files, the
effects are really weird and hard to debug. Also, we want reproducible
builds and obviously the above makes builds non-reproducible. So we
have a FAQ entry that warns against using ccache and tells the user to
clear the cache in case of problems.
Now that ccache is called from the toolchain wrapper, it is in fact
possible to at least use the 'mtime' compiler hash for the external
toolchain and for the host-gcc. Indeed, in this case, the compiler
executable comes from a tarball so the mtime will be a good reference
for its state. Therefore, the patch (sed script) that changes the
default from 'mtime' to 'none' is removed.
For the internal toolchain, we can do better by providing a hash of
the relevant toolchain options. We are only interested in things that
affect the compiler itself, because ccache also processes the header
files and it doesn't look at libraries because it doesn't cache the
link step, just compilation. Everything that affects the compiler
itself can nicely be summarised in $(HOST_GCC_FINAL_CONF_OPTS). Of
course, also the compiler source itself is relevant, so the source
tarball and all the patches are included in the hash. For this purpose,
a new HOST_GCC_XTENSA_OVERLAY_TAR is introduced.
The following procedure tests the ccache behaviour:
Use this defconfig:
BR2_arm=y
BR2_CCACHE=y
make
readelf -A output/build/uclibc-1.0.6/libc/signal/signal.os
-> Tag_CPU_name: "ARM926EJ-S"
Now make menuconfig, change variant into BR2_cortex_a9
make clean; make
readelf -A output/build/uclibc-1.0.6/libc/signal/signal.os
-> Tag_CPU_name: "ARM926EJ-S"
should be "Cortex-A9"
After this commit, it is "Cortex-A9".
Signed-off-by: Arnout Vandecappelle (Essensium/Mind) <arnout@mind.be>
Cc: Danomi Manchego <danomimanchego123@gmail.com>
Cc: Károly Kasza <kaszak@gmail.com>
Cc: Samuel Martin <s.martin49@gmail.com>
Cc: Romain Naour <romain.naour@openwide.fr>
Signed-off-by: Peter Korsgaard <peter@korsgaard.com>
2015-10-04 17:25:00 +02:00
|
|
|
#ifdef BR_CCACHE_HASH
|
|
|
|
fprintf(stderr, "%sCCACHE_COMPILERCHECK='string:" BR_CCACHE_HASH "'",
|
|
|
|
(debug == 2) ? "\n " : " ");
|
2015-10-04 17:25:32 +02:00
|
|
|
#endif
|
|
|
|
#ifdef BR_CCACHE_BASEDIR
|
|
|
|
fprintf(stderr, "%sCCACHE_BASEDIR='" BR_CCACHE_BASEDIR "'",
|
|
|
|
(debug == 2) ? "\n " : " ");
|
ccache: use mtime for external toolchain, CONF_OPTS for internal toolchain
Our current ccache disables hashing of the compiler executable itself,
because using the default 'mtime' doesn't work in buildroot: we always
rebuild the compiler, so the mtime is always different, so the cache
always misses.
However, in the current situation, if a user changes the compiler
configuration (which would result in the compiler generating different
object files than before) and does 'make clean all', ccache may in fact
reuse object files from the previous run. This rarely gives problems,
because
(1) the cache expires quite quickly (it's only 1GB by default),
(2) radically changing compiler options will cause cache misses because
different header files are used,
(3) many compiler changes (e.g. changing -mtune) have little practical
effect because the resulting code is usually still compatible,
(4) we currently don't use CCACHE_BASEDIR, and almost all object files
will contain an absolute path (e.g. in debug info), so when
building in a different directory, most of it will miss,
(5) we do mostly build test, and many of the potential problems only
appear at runtime.
Still, when ccache _does_ use the wrong cached object files, the
effects are really weird and hard to debug. Also, we want reproducible
builds and obviously the above makes builds non-reproducible. So we
have a FAQ entry that warns against using ccache and tells the user to
clear the cache in case of problems.
Now that ccache is called from the toolchain wrapper, it is in fact
possible to at least use the 'mtime' compiler hash for the external
toolchain and for the host-gcc. Indeed, in this case, the compiler
executable comes from a tarball so the mtime will be a good reference
for its state. Therefore, the patch (sed script) that changes the
default from 'mtime' to 'none' is removed.
For the internal toolchain, we can do better by providing a hash of
the relevant toolchain options. We are only interested in things that
affect the compiler itself, because ccache also processes the header
files and it doesn't look at libraries because it doesn't cache the
link step, just compilation. Everything that affects the compiler
itself can nicely be summarised in $(HOST_GCC_FINAL_CONF_OPTS). Of
course, also the compiler source itself is relevant, so the source
tarball and all the patches are included in the hash. For this purpose,
a new HOST_GCC_XTENSA_OVERLAY_TAR is introduced.
The following procedure tests the ccache behaviour:
Use this defconfig:
BR2_arm=y
BR2_CCACHE=y
make
readelf -A output/build/uclibc-1.0.6/libc/signal/signal.os
-> Tag_CPU_name: "ARM926EJ-S"
Now make menuconfig, change variant into BR2_cortex_a9
make clean; make
readelf -A output/build/uclibc-1.0.6/libc/signal/signal.os
-> Tag_CPU_name: "ARM926EJ-S"
should be "Cortex-A9"
After this commit, it is "Cortex-A9".
Signed-off-by: Arnout Vandecappelle (Essensium/Mind) <arnout@mind.be>
Cc: Danomi Manchego <danomimanchego123@gmail.com>
Cc: Károly Kasza <kaszak@gmail.com>
Cc: Samuel Martin <s.martin49@gmail.com>
Cc: Romain Naour <romain.naour@openwide.fr>
Signed-off-by: Peter Korsgaard <peter@korsgaard.com>
2015-10-04 17:25:00 +02:00
|
|
|
#endif
|
2015-10-04 14:28:56 +02:00
|
|
|
for (i = 0; exec_args[i]; i++)
|
2013-09-21 00:00:30 +02:00
|
|
|
fprintf(stderr, "%s'%s'",
|
2015-10-04 14:28:56 +02:00
|
|
|
(debug == 2) ? "\n " : " ", exec_args[i]);
|
2013-09-21 00:00:30 +02:00
|
|
|
fprintf(stderr, "\n");
|
|
|
|
}
|
2013-07-18 23:54:50 +02:00
|
|
|
}
|
|
|
|
|
ccache: use mtime for external toolchain, CONF_OPTS for internal toolchain
Our current ccache disables hashing of the compiler executable itself,
because using the default 'mtime' doesn't work in buildroot: we always
rebuild the compiler, so the mtime is always different, so the cache
always misses.
However, in the current situation, if a user changes the compiler
configuration (which would result in the compiler generating different
object files than before) and does 'make clean all', ccache may in fact
reuse object files from the previous run. This rarely gives problems,
because
(1) the cache expires quite quickly (it's only 1GB by default),
(2) radically changing compiler options will cause cache misses because
different header files are used,
(3) many compiler changes (e.g. changing -mtune) have little practical
effect because the resulting code is usually still compatible,
(4) we currently don't use CCACHE_BASEDIR, and almost all object files
will contain an absolute path (e.g. in debug info), so when
building in a different directory, most of it will miss,
(5) we do mostly build test, and many of the potential problems only
appear at runtime.
Still, when ccache _does_ use the wrong cached object files, the
effects are really weird and hard to debug. Also, we want reproducible
builds and obviously the above makes builds non-reproducible. So we
have a FAQ entry that warns against using ccache and tells the user to
clear the cache in case of problems.
Now that ccache is called from the toolchain wrapper, it is in fact
possible to at least use the 'mtime' compiler hash for the external
toolchain and for the host-gcc. Indeed, in this case, the compiler
executable comes from a tarball so the mtime will be a good reference
for its state. Therefore, the patch (sed script) that changes the
default from 'mtime' to 'none' is removed.
For the internal toolchain, we can do better by providing a hash of
the relevant toolchain options. We are only interested in things that
affect the compiler itself, because ccache also processes the header
files and it doesn't look at libraries because it doesn't cache the
link step, just compilation. Everything that affects the compiler
itself can nicely be summarised in $(HOST_GCC_FINAL_CONF_OPTS). Of
course, also the compiler source itself is relevant, so the source
tarball and all the patches are included in the hash. For this purpose,
a new HOST_GCC_XTENSA_OVERLAY_TAR is introduced.
The following procedure tests the ccache behaviour:
Use this defconfig:
BR2_arm=y
BR2_CCACHE=y
make
readelf -A output/build/uclibc-1.0.6/libc/signal/signal.os
-> Tag_CPU_name: "ARM926EJ-S"
Now make menuconfig, change variant into BR2_cortex_a9
make clean; make
readelf -A output/build/uclibc-1.0.6/libc/signal/signal.os
-> Tag_CPU_name: "ARM926EJ-S"
should be "Cortex-A9"
After this commit, it is "Cortex-A9".
Signed-off-by: Arnout Vandecappelle (Essensium/Mind) <arnout@mind.be>
Cc: Danomi Manchego <danomimanchego123@gmail.com>
Cc: Károly Kasza <kaszak@gmail.com>
Cc: Samuel Martin <s.martin49@gmail.com>
Cc: Romain Naour <romain.naour@openwide.fr>
Signed-off-by: Peter Korsgaard <peter@korsgaard.com>
2015-10-04 17:25:00 +02:00
|
|
|
#ifdef BR_CCACHE_HASH
|
|
|
|
/* Allow compilercheck to be overridden through the environment */
|
|
|
|
if (setenv("CCACHE_COMPILERCHECK", "string:" BR_CCACHE_HASH, 0)) {
|
|
|
|
perror(__FILE__ ": Failed to set CCACHE_COMPILERCHECK");
|
|
|
|
return 3;
|
|
|
|
}
|
|
|
|
#endif
|
2015-10-04 17:25:32 +02:00
|
|
|
#ifdef BR_CCACHE_BASEDIR
|
|
|
|
/* Allow compilercheck to be overridden through the environment */
|
|
|
|
if (setenv("CCACHE_BASEDIR", BR_CCACHE_BASEDIR, 0)) {
|
|
|
|
perror(__FILE__ ": Failed to set CCACHE_BASEDIR");
|
|
|
|
return 3;
|
|
|
|
}
|
|
|
|
#endif
|
ccache: use mtime for external toolchain, CONF_OPTS for internal toolchain
Our current ccache disables hashing of the compiler executable itself,
because using the default 'mtime' doesn't work in buildroot: we always
rebuild the compiler, so the mtime is always different, so the cache
always misses.
However, in the current situation, if a user changes the compiler
configuration (which would result in the compiler generating different
object files than before) and does 'make clean all', ccache may in fact
reuse object files from the previous run. This rarely gives problems,
because
(1) the cache expires quite quickly (it's only 1GB by default),
(2) radically changing compiler options will cause cache misses because
different header files are used,
(3) many compiler changes (e.g. changing -mtune) have little practical
effect because the resulting code is usually still compatible,
(4) we currently don't use CCACHE_BASEDIR, and almost all object files
will contain an absolute path (e.g. in debug info), so when
building in a different directory, most of it will miss,
(5) we do mostly build test, and many of the potential problems only
appear at runtime.
Still, when ccache _does_ use the wrong cached object files, the
effects are really weird and hard to debug. Also, we want reproducible
builds and obviously the above makes builds non-reproducible. So we
have a FAQ entry that warns against using ccache and tells the user to
clear the cache in case of problems.
Now that ccache is called from the toolchain wrapper, it is in fact
possible to at least use the 'mtime' compiler hash for the external
toolchain and for the host-gcc. Indeed, in this case, the compiler
executable comes from a tarball so the mtime will be a good reference
for its state. Therefore, the patch (sed script) that changes the
default from 'mtime' to 'none' is removed.
For the internal toolchain, we can do better by providing a hash of
the relevant toolchain options. We are only interested in things that
affect the compiler itself, because ccache also processes the header
files and it doesn't look at libraries because it doesn't cache the
link step, just compilation. Everything that affects the compiler
itself can nicely be summarised in $(HOST_GCC_FINAL_CONF_OPTS). Of
course, also the compiler source itself is relevant, so the source
tarball and all the patches are included in the hash. For this purpose,
a new HOST_GCC_XTENSA_OVERLAY_TAR is introduced.
The following procedure tests the ccache behaviour:
Use this defconfig:
BR2_arm=y
BR2_CCACHE=y
make
readelf -A output/build/uclibc-1.0.6/libc/signal/signal.os
-> Tag_CPU_name: "ARM926EJ-S"
Now make menuconfig, change variant into BR2_cortex_a9
make clean; make
readelf -A output/build/uclibc-1.0.6/libc/signal/signal.os
-> Tag_CPU_name: "ARM926EJ-S"
should be "Cortex-A9"
After this commit, it is "Cortex-A9".
Signed-off-by: Arnout Vandecappelle (Essensium/Mind) <arnout@mind.be>
Cc: Danomi Manchego <danomimanchego123@gmail.com>
Cc: Károly Kasza <kaszak@gmail.com>
Cc: Samuel Martin <s.martin49@gmail.com>
Cc: Romain Naour <romain.naour@openwide.fr>
Signed-off-by: Peter Korsgaard <peter@korsgaard.com>
2015-10-04 17:25:00 +02:00
|
|
|
|
2015-10-04 14:28:56 +02:00
|
|
|
if (execv(exec_args[0], exec_args))
|
2011-04-29 13:09:26 +02:00
|
|
|
perror(path);
|
|
|
|
|
2011-06-21 21:54:27 +02:00
|
|
|
free(args);
|
|
|
|
|
2011-04-29 13:09:26 +02:00
|
|
|
return 2;
|
|
|
|
}
|