kumquat-buildroot/board/armadeus/readme.txt

90 lines
2.5 KiB
Plaintext
Raw Normal View History

Introduction
============
Armadeus APFxx are Systems On Module (SOM) based on Freescale/NXP i.MX
processors associated with an FPGA (except on APF28). Non volatile
data are stored in on-module NOR or NAND Flash, depending on the
model. These SOM can be used on Armadeus development boards or with
custom docking boards.
Supported platforms
===================
Buildroot currently supports the following Armadeus platforms with the
associated defconfigs:
* APF9328 SOM + devt boards -> armadeus_apf9328_defconfig
* APF27 SOM + devt board -> armadeus_apf27_defconfig
* APF51 SOM + devt board -> armadeus_apf51_defconfig
* APF28 SOM + devt board -> armadeus_apf28_defconfig
Vanilla Linux versions are preferred to Freescale's one in these
configurations.
How to build it
===============
Configure Buildroot
-------------------
Let's say you own an APFxx SOM with it's corresponding development
board, all you have to do is:
$ make armadeus_apfxx_defconfig
where "apfxx" is the version of your SOM.
Launch build
------------
$ make
Result of the build
-------------------
When the build is finished, you will end up with:
output/images/
├── imx**-apfxxdev.dtb [1]
├── rootfs.jffs2 [2]
├── rootfs.tar
├── rootfs.ubi [2]
├── rootfs.ubifs [2]
└── uImage
[1] Only if the kernel version used uses a Device Tree.
[2] .ubi/.ubifs images are not available on APF9328 and replaced by a
.jffs2 one in this case.
Building U-Boot is currently not supported in these configurations.
Installation
============
You will require a serial connection to the board and a TFTP server on
your Host PC. Assuming your server is configured for exporting
/tftpboot/ directory, you will have to copy the generated images to
it:
$ cp output/images/uImage /tftpboot/apfxx-linux.bin
$ cp output/images/*.dtb /tftpboot/
$ cp output/images/rootfs.ubi /tftpboot/apfxx-rootfs.ubi
$ cp output/images/rootfs.jffs2 /tftpboot/apfxx-rootfs.jffs2
where "apfxx" is the version of your SOM, as used with _defconfigs.
Then on your serial terminal, all you have to do is:
* interrupt the boot process and access U-Boot console by pressing any
key when booting,
* configure board and server IP addresses with "ipaddr" and "serverip"
environment variables,
* if you want to update kernel:
BIOS > run update_kernel
* if you want to update device tree:
BIOS > run update_dtb
* if you want to update rootfs:
BIOS > run update_rootfs
That's it !